These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 6499496)

  • 1. The effect of cooling rate and warming rate on the packing effect in human erythrocytes frozen and thawed in the presence of 2 M glycerol.
    Pegg DE; Diaper MP; Skaer HL; Hunt CJ
    Cryobiology; 1984 Oct; 21(5):491-502. PubMed ID: 6499496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the separate effects of influence factors and their coupled interactions on cryoinjury of human erythrocytes.
    Gao DY; Lin S; Kornblatt JA; Guttman FM
    Cryobiology; 1989 Aug; 26(4):355-68. PubMed ID: 2766783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of cooling rate, warming rate, glycerol concentration, and dilution procedure on the viability of frozen-thawed human granulocytes.
    Frim J; Mazur P
    Cryobiology; 1983 Dec; 20(6):657-76. PubMed ID: 6661915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of warming rate on mouse embryos frozen and thawed in glycerol.
    Rall WF; Polge C
    J Reprod Fertil; 1984 Jan; 70(1):285-92. PubMed ID: 6363690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of the survival of human erythrocytes frozen slowly in various concentrations of glycerol.
    Souzu H; Mazur P
    Biophys J; 1978 Jul; 23(1):89-100. PubMed ID: 667309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival of frozen-thawed human red cells as a function of cooling and warming velocities.
    Miller RH; Mazur P
    Cryobiology; 1976 Aug; 13(4):404-14. PubMed ID: 971585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryopreservation of Plasmodium chabaudi. II. Cooling and warming rates.
    Mutetwa SM; James ER
    Cryobiology; 1984 Oct; 21(5):552-8. PubMed ID: 6499502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The "unfrozen fraction" hypothesis of freezing injury to human erythrocytes: a critical examination of the evidence.
    Pegg DE; Diaper MP
    Cryobiology; 1989 Feb; 26(1):30-43. PubMed ID: 2924591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cooling and warming rate to and from -70 degrees C, and effect of further cooling from -70 to -196 degrees C on the motility of mouse spermatozoa.
    Koshimoto C; Mazur P
    Biol Reprod; 2002 May; 66(5):1477-84. PubMed ID: 11967213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of cell concentration on the recovery of human erythrocytes after freezing and thawing in the presence of glycerol.
    Pegg DE
    Cryobiology; 1981 Jun; 18(3):221-8. PubMed ID: 7238074
    [No Abstract]   [Full Text] [Related]  

  • 11. The survival of Escherichia coli from freeze-thaw damage: permeability barrier damage and viability.
    Calcott PH; MacLeod RA
    Can J Microbiol; 1975 Nov; 21(11):1724-32. PubMed ID: 1104119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cooling and warming rate on cortical cell function of glycerolized rabbit kidneys.
    Pegg DE; Jacobsen IA; Diaper MP; Foreman J
    Cryobiology; 1984 Oct; 21(5):529-35. PubMed ID: 6499499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of various cooling rates on the membrane ultrastructure of frozen human erythrocytes and its relation to the extent of haemolysis after thawing.
    Fujikawa S
    J Cell Sci; 1981 Jun; 49():369-82. PubMed ID: 7309810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of the morphology and viability of hyphae of Penicillium expansum and Phytophthora nicotianae during freezing and thawing.
    Smith D; Coulson GE; Morris GJ
    J Gen Microbiol; 1986 Jul; 132(7):2013-21. PubMed ID: 3794645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EFFECTS OF COOLING RATES ON THE PRESERVATION OF ERYTHROCYTES IN FROZEN GLYCEROLATED BLOOD.
    RAPATZ G; LUYET B
    Biodynamica; 1963 Oct; 9():125-36. PubMed ID: 14065043
    [No Abstract]   [Full Text] [Related]  

  • 16. Contributions of unfrozen fraction and of salt concentration to the survival of slowly frozen human erythrocytes: influence of warming rate.
    Mazur P; Rigopoulos N
    Cryobiology; 1983 Jun; 20(3):274-89. PubMed ID: 6884070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of fast (one-step) and interrupted slow cooling methods using a range of intracellular and extracellular cryoprotectants for the freeze-preservation of Plasmodium yoelii-infected mouse erythrocytes.
    McColm AA; Latter VS
    Trans R Soc Trop Med Hyg; 1986; 80(1):29-33. PubMed ID: 3726993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Preservation of erythrocytes by freezing in liquid nitrogen. Use of an I.B.M. blood regenerator].
    Mannoni P; Beaujean F; Forestier LE
    Rev Fr Transfus Immunohematol; 1975 Dec; 18(4):425-38. PubMed ID: 1228857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of cell concentration on the contribution of unfrozen fraction and salt concentration to the survival of slowly frozen human erythrocytes.
    Mazur P; Cole KW
    Cryobiology; 1985 Dec; 22(6):509-36. PubMed ID: 4075810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryoprotection of red blood cells by 1,3-butanediol and 2,3-butanediol.
    Mehl P; Boutron P
    Cryobiology; 1988 Feb; 25(1):44-54. PubMed ID: 3349810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.