These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 6500060)

  • 1. Assignment of the Fe-N epsilon (His) stretching mode in the resonance Raman spectra of a monomeric insect cyanomethaemoglobin.
    Kerr EA; Yu NT; Gersonde K
    FEBS Lett; 1984 Dec; 178(1):31-3. PubMed ID: 6500060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haem-rotational disorder in monomeric allosteric cyano-Met insect haemoglobins monitored by resonance Raman spectroscopy.
    Gersonde K; Yu NT; Kerr EA; Smith KM; Parish DW
    J Mol Biol; 1987 Apr; 194(3):545-56. PubMed ID: 3625773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-carbon bond lengths in carbonmonoxy and cyanomet complexes of the monomeric hemoglobin III from Chironomus thummi thummi: a critical comparison between resonance Raman and x-ray diffraction studies.
    Yu NT; Benko B; Kerr EA; Gersonde K
    Proc Natl Acad Sci U S A; 1984 Aug; 81(16):5106-10. PubMed ID: 6591180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman investigation of CO-ligated monomeric insect hemoglobins. Direct evidence for reciprocal changes in iron-axial ligand bonds induced by allosteric transitions.
    Gersonde K; Kerr E; Yu NT; Parish DW; Smith KM
    J Biol Chem; 1986 Jul; 261(19):8678-85. PubMed ID: 3722166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-histidine stretching vibration in the deoxy state of insect hemoglobins with different O2 affinities and Bohr effects.
    Kerr EA; Yu NT; Gersonde K; Parish DW; Smith KM
    J Biol Chem; 1985 Oct; 260(23):12665-9. PubMed ID: 4044602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman assignment and evidence for noncoupling of individual 2- and 4-vinyl vibrational modes in a monomeric cyanomethemoglobin.
    Gersonde K; Yu NT; Lin SH; Smith KM; Parish DW
    Biochemistry; 1989 May; 28(9):3960-6. PubMed ID: 2752001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cobalt-nitrosyl stretching vibration as a sensitive resonance Raman probe for distal histidine-nitrosyl interaction in monomeric hemoglobins.
    Yu NT; Thompson HM; Mizukami H; Gersonde K
    Eur J Biochem; 1986 Aug; 159(1):129-32. PubMed ID: 3743568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman evidence for the mechanism of the allosteric control of O2-binding in a cobalt-substituted monomeric insect hemoglobin.
    Thompson HM; Yu NT; Gersonde K
    Biophys J; 1987 Feb; 51(2):289-95. PubMed ID: 3828462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman evidence for an unusually strong exogenous ligand-metal bond in a monomeric nitrosyl manganese hemoglobin.
    Lin SH; Yu NT; Gersonde K
    FEBS Lett; 1988 Mar; 229(2):367-71. PubMed ID: 3345847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of resonance Raman spectra of metmyoglobin and methemoglobin azide. Detection of resonance-enhanced bound azide vibrations and iron-azide stretch.
    Tsubaki M; Srivastava RB; Yu NT
    Biochemistry; 1981 Feb; 20(4):946-52. PubMed ID: 7213625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of an isotope-sensitive low-frequency Raman band specific to metmyoglobin.
    Hirota S; Mizoguchi Y; Yamauchi O; Kitagawa T
    J Biol Inorg Chem; 2002 Jan; 7(1-2):217-21. PubMed ID: 11862557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Selected carboxymethylation of ferri-hemoglobin from insect larvae Chironomus thummi thummi].
    Artoiukh RI; Atanasov BP; Vol'kenshteĭn MV; Gerzonde K
    Mol Biol (Mosk); 1975; 9(3):452-8. PubMed ID: 175263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the control of dioxygen binding in a dimeric cobalt-substituted insect hemoglobin. Resonance Raman evidence for cobalt-axial-ligand bond changes.
    Yu NT; Mackin Thompson H; Zepke D; Gersonde K
    Eur J Biochem; 1986 Jun; 157(3):579-83. PubMed ID: 3720744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman study of cyanide-ligated horseradish peroxidase. Detection of two binding geometries and direct evidence for the "push-pull" effect.
    al-Mustafa J; Kincaid JR
    Biochemistry; 1994 Mar; 33(8):2191-7. PubMed ID: 8117676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman studies of nitric oxide binding to ferric and ferrous hemoproteins: detection of Fe(III)--NO stretching, Fe(III)--N--O bending, and Fe(II)--N--O bending vibrations.
    Benko B; Yu NT
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):7042-6. PubMed ID: 6580627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-induced conformational changes of the Fe(2+)-N epsilon (His F8) linkage in deoxyhemoglobin trout IV detected by the Raman active Fe(2+)-N epsilon (His F8) stretching mode.
    Bosenbeck M; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1992 Jan; 61(1):31-41. PubMed ID: 1540697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman studies of sterically hindered cyanomet "strapped" hemes. Effects of ligand distortion and base tension on iron-carbon bond.
    Tanaka T; Yu NT; Chang CK
    Biophys J; 1987 Nov; 52(5):801-5. PubMed ID: 3427189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isomeric incorporation of the haem into monomeric haemoglobins of Chironomus thummi thummi. 1. Isolation of chemically homogeneous haemoglobins. Evidence for the isomerism of the haem in the component III.
    Ribbing W; Rüterjans H
    Eur J Biochem; 1980; 108(1):79-87. PubMed ID: 7408855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometries and electronic structures of cyanide adducts of the non-heme iron active site of superoxide reductases: vibrational and ENDOR studies.
    Clay MD; Yang TC; Jenney FE; Kung IY; Cosper CA; Krishnan R; Kurtz DM; Adams MW; Hoffman BM; Johnson MK
    Biochemistry; 2006 Jan; 45(2):427-38. PubMed ID: 16401073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.