These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 6500184)

  • 1. Guidance of optic axons in vivo by a preformed adhesive pathway on neuroepithelial endfeet.
    Silver J; Rutishauser U
    Dev Biol; 1984 Dec; 106(2):485-99. PubMed ID: 6500184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axon pathway boundaries in the developing brain. I. Cellular and molecular determinants that separate the optic and olfactory projections.
    Silver J; Poston M; Rutishauser U
    J Neurosci; 1987 Jul; 7(7):2264-72. PubMed ID: 3302126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the axonal cell adhesion molecules axonin-1 and Ng-CAM during the development of the chick retinotectal system.
    Rager G; Morino P; Schnitzer J; Sonderegger P
    J Comp Neurol; 1996 Feb; 365(4):594-609. PubMed ID: 8742305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth.
    Perez RG; Halfter W
    Dev Biol; 1993 Mar; 156(1):278-92. PubMed ID: 7680630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber-fiber interaction and tectal cues influence the development of the chicken retinotectal projection.
    Thanos S; Bonhoeffer F; Rutishauser U
    Proc Natl Acad Sci U S A; 1984 Mar; 81(6):1906-10. PubMed ID: 6584925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABA immunoreactive axons and growth cones in the developing chicken optic nerve and tract.
    Granda RH; Crossland WJ
    Brain Res Dev Brain Res; 1991 Dec; 64(1-2):196-9. PubMed ID: 1786644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth cone morphology varies with position in the developing mouse visual pathway from retina to first targets.
    Bovolenta P; Mason C
    J Neurosci; 1987 May; 7(5):1447-60. PubMed ID: 3572487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axonal guidance during development of the optic nerve: the role of pigmented epithelia and other extrinsic factors.
    Silver J; Sapiro J
    J Comp Neurol; 1981 Nov; 202(4):521-38. PubMed ID: 7298913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique changes of ganglion cell growth cone behavior following cell adhesion molecule perturbations: a time-lapse study of the living retina.
    Brittis PA; Lemmon V; Rutishauser U; Silver J
    Mol Cell Neurosci; 1995 Oct; 6(5):433-49. PubMed ID: 8581314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invariant Sema5A inhibition serves an ensheathing function during optic nerve development.
    Oster SF; Bodeker MO; He F; Sretavan DW
    Development; 2003 Feb; 130(4):775-84. PubMed ID: 12506007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The avian tectobulbar tract: development, explant culture, and effects of antibodies on the pattern of neurite outgrowth.
    Kröger S; Schwarz U
    J Neurosci; 1990 Sep; 10(9):3118-34. PubMed ID: 2204687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts.
    Baudet ML; Rattray D; Harvey S
    Neuroscience; 2007 Aug; 148(1):151-63. PubMed ID: 17618059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunohistochemical localization of laminin, neural cell adhesion molecule, collagen type IV and T-61 antigen in the embryonic retina of the Japanese quail by in vivo injection of antibodies.
    Halfter W; Fua CS
    Cell Tissue Res; 1987 Sep; 249(3):487-96. PubMed ID: 3664600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunohistochemical localization of cell adhesion molecules and cell-cell contact proteins during regeneration of the rat optic nerve induced by sciatic nerve autotransplantation.
    Dezawa M; Nagano T
    Anat Rec; 1996 Sep; 246(1):114-26. PubMed ID: 8876830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The polysialic acid moiety of the neural cell adhesion molecule is involved in intraretinal guidance of retinal ganglion cell axons.
    Monnier PP; Beck SG; Bolz J; Henke-Fahle S
    Dev Biol; 2001 Jan; 229(1):1-14. PubMed ID: 11133150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regionally specific expression of L1 and sialylated NCAM in the retinofugal pathway of mouse embryos.
    Chung KY; Leung KM; Lin CC; Tam KC; Hao YL; Taylor JS; Chan SO
    J Comp Neurol; 2004 Apr; 471(4):482-98. PubMed ID: 15022265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of NCAM in the chick hindlimb during axon outgrowth and synaptogenesis.
    Tosney KW; Watanabe M; Landmesser L; Rutishauser U
    Dev Biol; 1986 Apr; 114(2):437-52. PubMed ID: 3082698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential adhesivity of neuroepithelial cells and pioneering circumferential axons.
    Holley JA
    Dev Biol; 1987 Oct; 123(2):389-400. PubMed ID: 3653516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistological localization of the adhesion molecules L1, N-CAM, and MAG in the developing and adult optic nerve of mice.
    Bartsch U; Kirchhoff F; Schachner M
    J Comp Neurol; 1989 Jun; 284(3):451-62. PubMed ID: 2474006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors guiding optic fibers in developing Xenopus retina.
    Bork T; Schabtach E; Grant P
    J Comp Neurol; 1987 Oct; 264(2):147-58. PubMed ID: 3680626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.