BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6500426)

  • 21. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Cataracts due to 1,4-dimethylsulfonoxy-butane & the sulfhydryl group content in lenses with such cataracts].
    DEL PIANTO E; BOZZONI F; VALESINI GA
    Boll Ocul; 1958 Jan; 37(1):40-9. PubMed ID: 13560670
    [No Abstract]   [Full Text] [Related]  

  • 23. [Carnitine level in human lens and density of cataract].
    Gawecki M; Raczyńska K; Homziuk M; Iwaszkiewicz-Bilikiewicz B
    Klin Oczna; 2004; 106(3 Suppl):409-10. PubMed ID: 15636217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 'The reactivity of sulfhydryl groups in the normal lenses of albino rat (Rattus norvegicus Berkenhaut) and guinea pig (Cavia porcellus Linnaeus)'.
    Rawal UM; Rao GN
    Indian J Ophthalmol; 1979 Jul; 27(2):32-4. PubMed ID: 541028
    [No Abstract]   [Full Text] [Related]  

  • 25. [On variations in some phospholipids of bovine crystallin lens in senile cataract].
    Plazonnet B; Tonche P; Bastide P; Komor J
    C R Seances Soc Biol Fil; 1969; 163(1):145-6. PubMed ID: 4241397
    [No Abstract]   [Full Text] [Related]  

  • 26. [New regulatory protein isolated from the bovine eye lens and its action on the cataract development in rat in vitro].
    Krasnov MS; Gurmizov EP; Iamskova VP; Gundorova RA; Iamskov IA
    Vestn Oftalmol; 2005; 121(1):37-9. PubMed ID: 15759848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The reactivity of the sulfhydryl groups in normal bovine lens.
    MEROLA LO; KINOSHITA JH
    Am J Ophthalmol; 1957 Nov; 44(5 Pt 2):326-31; discussion 331-2. PubMed ID: 13469997
    [No Abstract]   [Full Text] [Related]  

  • 28. [Measurements of fluorescence spectra in transparent and cataractous lenses].
    Balter A; Bieganowski L; Maciejewski K; Marszałek T
    Klin Oczna; 1988; 90 Suppl():474-5. PubMed ID: 3275362
    [No Abstract]   [Full Text] [Related]  

  • 29. Desferrioxamine and zinc-desferrioxamine reduce lens oxidative damage.
    Schaal S; Beiran I; Rozner H; Rubinstein I; Chevion M; Miller B; Dovrat A
    Exp Eye Res; 2007 Mar; 84(3):561-8. PubMed ID: 17239855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract.
    Sweeney MH; Truscott RJ
    Exp Eye Res; 1998 Nov; 67(5):587-95. PubMed ID: 9878221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser scanning analysis of cold cataract in young and old bovine lenses.
    Banh A; Sivak JG
    Mol Vis; 2004 Mar; 10():144-7. PubMed ID: 15014370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of sulfhydryl groups in the formation of a hereditary cataract in the rat.
    Takemoto LJ; Azari P; Gorthy WC
    Exp Eye Res; 1975 Jan; 20(1):1-13. PubMed ID: 1193188
    [No Abstract]   [Full Text] [Related]  

  • 33. Redox status of the eye lens: a regional study.
    Argirova M; Kleine-Reidick M; Breipohl W
    Cell Biochem Biophys; 2004; 41(3):381-90. PubMed ID: 15509888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the oxidation of sulfhydryl groups on lens proteins.
    Testa M; Fiore C; Bocci N; Calabrò S
    Exp Eye Res; 1968 Apr; 7(2):276-90. PubMed ID: 5646618
    [No Abstract]   [Full Text] [Related]  

  • 35. Content and distribution of calcium in bovine lenses of different ages.
    Rink H; Twenhöven H
    Ophthalmic Res; 1985; 17(6):321-4. PubMed ID: 4069568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical researches in age related cataract.
    Nechita A; Filip A; Serban F; Nechita N
    Oftalmologia; 2006; 50(2):44-50. PubMed ID: 16927758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Do changes in the hydration of the diabetic human lens precede cataract formation?
    Bettelheim FA; Li L; Zeng FF
    Res Commun Mol Pathol Pharmacol; 1998 Oct; 102(1):3-14. PubMed ID: 9920342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein carbonylation and glycation in human lenses.
    Balog Z; Klepac R; Sikić J; Jukić-Lesina T
    Coll Antropol; 2001; 25 Suppl():145-8. PubMed ID: 11817006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Postnatal biochemical changes in rat lens: an important factor in cataract models.
    Fris M; Midelfart A
    Curr Eye Res; 2007 Feb; 32(2):95-103. PubMed ID: 17364742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.