These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6501117)

  • 1. Heat injury and recovery of Streptococcus faecium associated with the souring of chub-packed luncheon meat.
    Bell RG; De Lacy KM
    J Appl Bacteriol; 1984 Oct; 57(2):229-36. PubMed ID: 6501117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of NaCl, NaNO2 and oxygen on the germination and growth of Bacillus licheniformis, a spoilage organism of chub-packed luncheon meat.
    Bell RG; De Lacy KM
    J Appl Bacteriol; 1984 Dec; 57(3):523-30. PubMed ID: 6530382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A note on the microbial spoilage of undercooked chub-packed luncheon meat.
    Bell RG; De Lacy KM
    J Appl Bacteriol; 1983 Feb; 54(1):131-4. PubMed ID: 6853390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A note on the identity and properties of the spoilage microflora of chub-packed luncheon meat stored at ambient temperature.
    Bell RG; De Lacy KM
    Can J Microbiol; 1983 Sep; 29(9):1220-3. PubMed ID: 6652582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of variation of thermal processing on the microbial spoilage of chub-packed luncheon meat.
    Bell RG
    J Appl Bacteriol; 1983 Apr; 54(2):249-55. PubMed ID: 6853398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrite loss and spoilage microflora development in chub-packed luncheon meat.
    Bell RG; De Lacy KM
    J Appl Bacteriol; 1983 Dec; 55(3):473-80. PubMed ID: 6662832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic models to describe the effect of NaNO2 in combination with NaCl on the growth inhibition of Lactobacillus in frankfurters.
    Lee S; Lee H; Kim S; Lee J; Ha J; Gwak E; Oh MH; Park BY; Kim JS; Choi KH; Yoon Y
    Meat Sci; 2015 Dec; 110():302-9. PubMed ID: 26410421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sodium nitrite and sodium chloride on growth of lactic acid bacteria.
    Korkeala H; Alanko T; Tiusanen T
    Acta Vet Scand; 1992; 33(1):27-32. PubMed ID: 1598855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of oxygen in the microbial spoilage of luncheon meat cooked in a plastic casing.
    Bell RG; De Lacy KM
    J Appl Bacteriol; 1982 Dec; 53(3):407-11. PubMed ID: 7169389
    [No Abstract]   [Full Text] [Related]  

  • 10. Predictive model for the reduction of heat resistance of Listeria monocytogenes in ground beef by the combined effect of sodium chloride and apple polyphenols.
    Juneja VK; Altuntaş EG; Ayhan K; Hwang CA; Sheen S; Friedman M
    Int J Food Microbiol; 2013 Jun; 164(1):54-9. PubMed ID: 23587714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of curing agents in the preservation of shelf-stable canned meat products.
    Duncan CL; Foster EM
    Appl Microbiol; 1968 Feb; 16(2):401-5. PubMed ID: 5645422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [STudies on the likelihood of growth of Streptococcus faecium following thermal treatment in meat suspensions (author's transl)].
    Houben JH
    Tijdschr Diergeneeskd; 1980 Nov; 105(22):959-66. PubMed ID: 7003809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth inhibition of heat-injured Enterococcus faecium by oligophosphates in a cured meat model.
    Houben JH; Tjeerdsma-van Bokhoven JL
    Int J Food Microbiol; 2004 Dec; 97(1):85-91. PubMed ID: 15527922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of temperature, pH, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes.
    McClure PJ; Kelly TM; Roberts TA
    Int J Food Microbiol; 1991 Oct; 14(1):77-91. PubMed ID: 1742175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The antilisterial effect of Leuconostoc carnosum 4010 and leucocins 4010 in the presence of sodium chloride and sodium nitrite examined in a structured gelatin system.
    Hornbaek T; Brocklehurst TF; Budde BB
    Int J Food Microbiol; 2004 Apr; 92(2):129-40. PubMed ID: 15109790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Staphtox predictor - A dynamic mathematical model to predict formation of Staphylococcus enterotoxin during heating and fermentation of meat products.
    Gunvig A; Andresen MS; Jacobsen T; Borggaard C
    Int J Food Microbiol; 2018 Nov; 285():81-91. PubMed ID: 30071496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of salt reduction on growth of Listeria monocytogenes in meat and poultry systems.
    Harper NM; Getty KJ
    J Food Sci; 2012 Dec; 77(12):M669-74. PubMed ID: 23164056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enterococcus faecium isolated from Lombo, a Portuguese traditional meat product: characterisation of antibacterial compounds and factors affecting bacteriocin production.
    Todorov SD; Favaro L; Gibbs P; Vaz-Velho M
    Benef Microbes; 2012 Dec; 3(4):319-30. PubMed ID: 23234731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of environmental parameters on growth kinetics of Bacillus cereus (ATCC 7004) after mild heat treatment.
    Martínez S; Borrajo R; Franco I; Carballo J
    Int J Food Microbiol; 2007 Jun; 117(2):223-7. PubMed ID: 16978725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimum inhibitory concentration (MIC) of sodium lactate for pathogens and spoilage organisms occurring in meat products.
    Houtsma PC; de Wit JC; Rombouts FM
    Int J Food Microbiol; 1993 Dec; 20(4):247-57. PubMed ID: 8110602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.