BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6501299)

  • 1. Novel reactivity of cytochrome P-450-CAM. Methyl hydroxylation of 5,5-difluorocamphor.
    Eble KS; Dawson JH
    J Biol Chem; 1984 Dec; 259(23):14389-93. PubMed ID: 6501299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupling oxygen transfer and electron transfer in the oxygenation of camphor analogues by cytochrome P450-CAM. Direct observation of an intermolecular isotope effect for substrate C-H activation.
    Kadkhodayan S; Coulter ED; Maryniak DM; Bryson TA; Dawson JH
    J Biol Chem; 1995 Nov; 270(47):28042-8. PubMed ID: 7499289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5,5-difluorocamphor, and pericyclocamphanone by cytochrome P-450cam.
    Collins JR; Loew GH
    J Biol Chem; 1988 Mar; 263(7):3164-70. PubMed ID: 3343243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of 5-bromocamphor with cytochrome P-450 cam. Production of 5-ketocamphor from a mixed spin state hemoprotein.
    Gould PV; Gelb MH; Sligar SG
    J Biol Chem; 1981 Jul; 256(13):6686-91. PubMed ID: 7240237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of substrate on the spectral properties of oxyferrous wild-type and T252A cytochrome P450-CAM.
    Sono M; Perera R; Jin S; Makris TM; Sligar SG; Bryson TA; Dawson JH
    Arch Biochem Biophys; 2005 Apr; 436(1):40-9. PubMed ID: 15752707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monoxygenase system.
    Gelb MH; Heimbrook DC; Mälkönen P; Sligar SG
    Biochemistry; 1982 Jan; 21(2):370-7. PubMed ID: 7074020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation of the active site of cytochrome P450-cam.
    Wade RC
    J Comput Aided Mol Des; 1990 Jun; 4(2):199-204. PubMed ID: 2213064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P450(camr), a cytochrome P450 catalysing the stereospecific 6- endo-hydroxylation of (1 R)-(+)-camphor.
    Grogan G; Roberts GA; Parsons S; Turner NJ; Flitsch SL
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):449-54. PubMed ID: 12172608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role of the putidaredoxin COOH-terminus in P-450cam (cytochrome m) hydroxylations.
    Sligar SG; Debrunner PG; Lipscomb JD; Namtvedt MJ; Gunsalus IC
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3906-10. PubMed ID: 4530269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical mechanisms for cytochrome P-450 hydroxylation: evidence for acylation of heme-bound dioxygen.
    Sligar SG; Kennedy KA; Pearson DC
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1240-4. PubMed ID: 6929480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADH- and oxygen-dependent multiple turnovers of cytochrome P-450-CAM without putidaredoxin and putidaredoxin reductase.
    Eble KS; Dawson JH
    Biochemistry; 1984 Apr; 23(9):2068-73. PubMed ID: 6722135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of camphor oxidation and reduction products in Pseudomonas putida: new activity of the cytochrome P450cam system.
    Prasad B; Rojubally A; Plettner E
    J Chem Ecol; 2011 Jun; 37(6):657-67. PubMed ID: 21562741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of cytochrome P-450CAM complexed with camphane, thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation.
    Raag R; Poulos TL
    Biochemistry; 1991 Mar; 30(10):2674-84. PubMed ID: 2001355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the product specificity and coupling of cytochrome P450cam.
    Paulsen MD; Ornstein RL
    J Comput Aided Mol Des; 1992 Oct; 6(5):449-60. PubMed ID: 1474394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome p450.
    Kamachi T; Yoshizawa K
    J Am Chem Soc; 2003 Apr; 125(15):4652-61. PubMed ID: 12683838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Camphor revisited: involvement of a unique monooxygenase in metabolism of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid by Pseudomonas putida.
    Ougham HJ; Taylor DG; Trudgill PW
    J Bacteriol; 1983 Jan; 153(1):140-52. PubMed ID: 6848481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the structure of putidaredoxin and cytochrome P-450 cam and their mode of interaction.
    Dus K
    Adv Exp Med Biol; 1975; 58(00):287-309. PubMed ID: 50718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450.
    Poulos TL; Finzel BC; Gunsalus IC; Wagner GC; Kraut J
    J Biol Chem; 1985 Dec; 260(30):16122-30. PubMed ID: 4066706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.