BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 6501443)

  • 1. Effects of bradykinin on permeability and diameter of pial vessels in vivo.
    Unterberg A; Wahl M; Baethmann A
    J Cereb Blood Flow Metab; 1984 Dec; 4(4):574-85. PubMed ID: 6501443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of bradykinin in the cerebral circulation.
    Wahl M; Görlach C; Hortobágyi T; Benyó Z
    Acta Physiol Hung; 1999; 86(2):155-60. PubMed ID: 10741874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intravital fluorescence microscopy for the study of blood-brain-barrier function.
    Wahl M; Unterberg A; Baethmann A
    Int J Microcirc Clin Exp; 1985; 4(1):3-18. PubMed ID: 2580809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeability and vasomotor response of cerebral vessels during exposure to arachidonic acid.
    Unterberg A; Wahl M; Hammersen F; Baethmann A
    Acta Neuropathol; 1987; 73(3):209-19. PubMed ID: 2441558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of bradykinin on pial arteries and arterioles in vitro and in situ.
    Wahl M; Young AR; Edvinsson L; Wagner F
    J Cereb Blood Flow Metab; 1983 Jun; 3(2):231-7. PubMed ID: 6841471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opening of the blood-brain barrier during cortical superfusion with histamine.
    Schilling L; Wahl M
    Brain Res; 1994 Aug; 653(1-2):289-96. PubMed ID: 7982064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bradykinin-induced leukocyte- and platelet-endothelium interactions in the cerebral microcirculation.
    Waldner MJ; Baethmann A; Uhl E; Lehmberg J
    Brain Res; 2012 Apr; 1448():163-9. PubMed ID: 22381894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood-brain barrier permeability and vascular reactivity to bradykinin after pretreatment with dexamethasone.
    Schürer L; Temesvari P; Wahl M; Unterberg A; Baethmann A
    Acta Neuropathol; 1989; 77(6):576-81. PubMed ID: 2750477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of free radicals on permeability and vasomotor response of cerebral vessels.
    Unterberg A; Wahl M; Baethmann A
    Acta Neuropathol; 1988; 76(3):238-44. PubMed ID: 3213426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway.
    Mayhan WG
    Am J Physiol; 1999 May; 276(5):C1148-53. PubMed ID: 10329964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of nitric oxide synthase does not alter basal permeability of the blood-brain barrier.
    Mayhan WG
    Brain Res; 2000 Feb; 855(1):143-9. PubMed ID: 10650141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bradykinin selectively opens blood-tumor barrier in experimental brain tumors.
    Inamura T; Black KL
    J Cereb Blood Flow Metab; 1994 Sep; 14(5):862-70. PubMed ID: 8063881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vasomotor and permeability effects of bradykinin in the cerebral microcirculation.
    Wahl M; Whalley ET; Unterberg A; Schilling L; Parsons AA; Baethmann A; Young AR
    Immunopharmacology; 1996 Jun; 33(1-3):257-63. PubMed ID: 8856159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: role of inducible nitric oxide synthase.
    Mayhan WG
    Brain Res; 1998 May; 792(2):353-7. PubMed ID: 9593993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective tumor blood-brain barrier opening with the kinin B2 receptor agonist [Phe(8)psi(CH(2)NH)Arg(9)]-BK in a F98 glioma rat model: an MRI study.
    Côté J; Savard M; Bovenzi V; Dubuc C; Tremblay L; Tsanaclis AM; Fortin D; Lepage M; Gobeil F
    Neuropeptides; 2010 Apr; 44(2):177-85. PubMed ID: 20080302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piglet pial arteries respond to N-methyl-D-aspartate in vivo but not in vitro.
    Simandle SA; Kerr BA; Lacza Z; Eckman DM; Busija DW; Bari F
    Microvasc Res; 2005 Jul; 70(1-2):76-83. PubMed ID: 15975610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of leukotrienes as mediator compounds in brain edema.
    Unterberg A; Schmidt W; Wahl M; Baethmann A
    Adv Neurol; 1990; 52():211-4. PubMed ID: 2118715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical vasodilatation produced by vasoactive intestinal polypeptide (VIP) and by physiological stimuli in the cat.
    Yaksh TL; Wang JY; Go VL
    J Cereb Blood Flow Metab; 1987 Jun; 7(3):315-26. PubMed ID: 3108270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracarotid administration of short-chain alkylglycerols for increased delivery of methotrexate to the rat brain.
    Erdlenbruch B; Schinkhof C; Kugler W; Heinemann DE; Herms J; Eibl H; Lakomek M
    Br J Pharmacol; 2003 Jun; 139(4):685-94. PubMed ID: 12812991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.