These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 6501572)
1. Nonenzymatic addition of glucocorticoids to lens proteins in steroid-induced cataracts. Manabe S; Bucala R; Cerami A J Clin Invest; 1984 Nov; 74(5):1803-10. PubMed ID: 6501572 [TBL] [Abstract][Full Text] [Related]
2. Nonenzymatic modification of lens crystallins by prednisolone induces sulfhydryl oxidation and aggregate formation: in vitro and in vivo studies. Bucala R; Manabe S; Urban RC; Cerami A Exp Eye Res; 1985 Sep; 41(3):353-63. PubMed ID: 4065253 [TBL] [Abstract][Full Text] [Related]
3. Steroid-induced cataract: new perspective from in vitro and lens culture studies. Dickerson JE; Dotzel E; Clark AF Exp Eye Res; 1997 Oct; 65(4):507-16. PubMed ID: 9464184 [TBL] [Abstract][Full Text] [Related]
4. Glucocorticoid-lens protein adducts in experimentally induced steroid cataracts. Bucala R; Gallati M; Manabe S; Cotlier E; Cerami A Exp Eye Res; 1985 Jun; 40(6):853-63. PubMed ID: 4018168 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
6. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related]
7. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins. Kodama T; Wong R; Takemoto L Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549 [TBL] [Abstract][Full Text] [Related]
8. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
9. Binding of dexamethasone by alpha-crystallin. Jobling AI; Stevens A; Augusteyn RC Invest Ophthalmol Vis Sci; 2001 Jul; 42(8):1829-32. PubMed ID: 11431449 [TBL] [Abstract][Full Text] [Related]
10. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
11. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens. David LL; Azuma M; Shearer TR Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740 [TBL] [Abstract][Full Text] [Related]
12. Steroid-protein adduct in the lens of chicken embryo following application of prednisolone esters. Hampl R; Doskocil M; Obenberger J; Stárka L Endocrinol Exp; 1988 Dec; 22(4):269-73. PubMed ID: 3243208 [TBL] [Abstract][Full Text] [Related]
13. Calcium activated proteolysis and protein modification in the U18666A cataract. Chandrasekher G; Cenedella RJ Exp Eye Res; 1993 Dec; 57(6):737-45. PubMed ID: 8150025 [TBL] [Abstract][Full Text] [Related]
14. The etiology of steroid cataract. James ER J Ocul Pharmacol Ther; 2007 Oct; 23(5):403-20. PubMed ID: 17900234 [TBL] [Abstract][Full Text] [Related]
15. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase. Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866 [TBL] [Abstract][Full Text] [Related]
16. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM). Ashida Y; Takeda T; Hosokawa M Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822 [TBL] [Abstract][Full Text] [Related]
17. Changes of urea-soluble and intrinsic membrane proteins in rat lenses during the formation of galactose cataract. Zhao HR; Ren XH Ophthalmic Res; 1992; 24(5):285-8. PubMed ID: 1475076 [TBL] [Abstract][Full Text] [Related]
18. Modifications in lens protein biosynthesis signal the initiation of cataracts induced by buthionine sulfoximine in mice. Calvin HI; Wu JX; Viswanadhan K; Fu SC Exp Eye Res; 1996 Oct; 63(4):357-68. PubMed ID: 8944543 [TBL] [Abstract][Full Text] [Related]
19. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification. Sanderson J; Marcantonio JM; Duncan G Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870 [TBL] [Abstract][Full Text] [Related]
20. Characterization of water-insoluble proteins in normal and cataractous human lens. Kamei A Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]