These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 650224)

  • 1. A comparison of microdistributions of taurine and cysteine sulphinate decarboxylase activity with those of GABA and L-glutamate decarboxylase activity in rat spinal cord and thalamus.
    Yoneda Y; Kuriyama K
    J Neurochem; 1978 Apr; 30(4):821-5. PubMed ID: 650224
    [No Abstract]   [Full Text] [Related]  

  • 2. Morphine induced alterations of gamma-aminobutyric acid and taurine contents and L-glutamate decarboxylase activity in rat spinal cord and thalamus: possible correlates with analgesic action of morphine.
    Kuriyama K; Yoneda Y
    Brain Res; 1978 Jun; 148(1):163-79. PubMed ID: 566149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional distribution of glutamate decarboxylase and gaba within the amygdaloid complex and stria terminalis system of the rat.
    Ben-Ari Y; Kanazawa I; Zigmond RE
    J Neurochem; 1976 Jun; 26(6):1279-83. PubMed ID: 932733
    [No Abstract]   [Full Text] [Related]  

  • 4. Stoichiometry of GABA and CO2 formation in glutamate decarboxylase assays: alteration by an impurity L-U-[14C] glutamate.
    Morin AM; Wasterlain CG
    J Neurochem; 1978 Jul; 31(1):371-3. PubMed ID: 671034
    [No Abstract]   [Full Text] [Related]  

  • 5. Distribution of glutamate decarboxylase, choline acetyl-transferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striatoentopeduncular and striatonigral GABAergic fibres.
    Fonnum F; Gottesfeld Z; Grofova I
    Brain Res; 1978 Mar; 143(1):125-38. PubMed ID: 630396
    [No Abstract]   [Full Text] [Related]  

  • 6. Immunocytochemical localization of GABAergic neurones at the electron microscopical level.
    Ribak CE; Vaughn JE; Barber RP
    Histochem J; 1981 Jul; 13(4):555-82. PubMed ID: 7031024
    [No Abstract]   [Full Text] [Related]  

  • 7. Microassay methods for taurine and cysteine sulfinate decarboxylase activity.
    Yoneda Y; Takashima S; Hirai K; Kurihara E; Yukawa Y; Tokunaga H; Kuriyama K
    Jpn J Pharmacol; 1977 Dec; 27(6):881-8. PubMed ID: 609153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of gamma-aminobutyric acid (GABA) and glutamate decarboxylase (GAD) activity in the guinea pig hippocampus--microassay method for the determination of GAD activity.
    Okada Y; Shimada C
    Brain Res; 1975 Nov; 98(1):202-6. PubMed ID: 1175058
    [No Abstract]   [Full Text] [Related]  

  • 9. Biosynthesis of taurine and enhancement of decarboxylation of cysteine sulphinate and glutamate by the electrical stimulation of rat brain slices.
    Oja SS; Karvonen ML; Lähdesmäki P
    Brain Res; 1973 May; 55(1):173-8. PubMed ID: 4713187
    [No Abstract]   [Full Text] [Related]  

  • 10. Demonstration of central gamma-aminobutyrate-containing nerve terminals by means of antibodies against glutamate decarboxylase.
    Pérez de la Mora M; Possani LD; Tapia R; Teran L; Palacios R; Fuxe K; Hökfelt T; Ljungdahl A
    Neuroscience; 1981; 6(5):875-95. PubMed ID: 6787456
    [No Abstract]   [Full Text] [Related]  

  • 11. Increase in taurine content before onset of seizures induced by a glutamate decarboxylase inhibitor.
    Haug P; Nitsch C
    Exp Brain Res; 1982; 48(3):463-6. PubMed ID: 7151938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraspinal glutamic decarboxylase distribution after transection of the cord as the thoracic level.
    Tappaz ML; Zivin JA; Kopin IJ
    Brain Res; 1976 Jul; 111(1):220-3. PubMed ID: 953703
    [No Abstract]   [Full Text] [Related]  

  • 13. [Immunocytochemical localization of GAD and CSAD in the rat cerebellum and spinal cord].
    Wu H; Song GX; Liu SD
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1986 Oct; 8(5):391-3. PubMed ID: 2952314
    [No Abstract]   [Full Text] [Related]  

  • 14. GABA and taurine enzymes in mammalian brain.
    Wu JY
    Curr Top Cell Regul; 1984; 24():119-28. PubMed ID: 6499517
    [No Abstract]   [Full Text] [Related]  

  • 15. Alteration of metabolism of retinal taurine following prolonged light and dark adaptation: a quantitative comparison with gamma-aminobutyric acid (GABA).
    Ida S; Nishimura C; Ueno E; Kuriyama K
    J Neurosci Res; 1981; 6(4):497-509. PubMed ID: 6975381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High concentration of GABA and high glutamate decarboxylase activity in rat pancreatic islets and human insulinoma.
    Okada Y; Taniguchi H; Schimada C
    Science; 1976 Nov; 194(4265):620-2. PubMed ID: 185693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of GABA system in frog retina following short light and dark adaptations - a quantitative comparison with retinal taurine.
    Nishimura C; Ida S; Kuriyama K
    Brain Res; 1981 Aug; 219(2):433-8. PubMed ID: 6973382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a GABA-containing projection from the entopeduncular nucleus to the lateral habenula in the rat.
    Nagy JI; Carter DA; Lehmann J; Fibiger HC
    Brain Res; 1978 Apr; 145(2):360-4. PubMed ID: 638794
    [No Abstract]   [Full Text] [Related]  

  • 19. Glutamic acid, GABA and their metabolising enzymes in the frog central nervous system.
    Yates RA; Taberner PV
    Brain Res; 1975 Feb; 84(3):399-407. PubMed ID: 1078986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur amino acid metabolism in the developing rhesus monkey brain: subcellular studies of taurine, cysteinesulfinic acid decarboxylase, gamma-aminobutyric acid, and glutamic acid decarboxylase.
    Rassin DK; Sturman JA; Gaull GE
    J Neurochem; 1981 Sep; 37(3):740-8. PubMed ID: 7276955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.