These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6502265)

  • 1. Choline uptake by isolated enterocytes of guinea pig.
    Hegazy E; Schwenk M
    J Nutr; 1984 Dec; 114(12):2217-20. PubMed ID: 6502265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uridine uptake by isolated intestinal epithelial cells of guinea pig.
    Schwenk M; Hegazy E; Lopez del Pino V
    Biochim Biophys Acta; 1984 Dec; 805(4):370-4. PubMed ID: 6210111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of active magnesium flux across the small intestine of the guinea pig.
    Hayashi H; Hoshi T
    Jpn J Physiol; 1992; 42(4):561-75. PubMed ID: 1474677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bile acid uptake by isolated intestinal mucosa cells of guinea pig.
    Schwenk M; Del Pino VL; Hegazy E
    Biochim Biophys Acta; 1982 Nov; 721(3):247-52. PubMed ID: 7171627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Riboflavin uptake by isolated enterocytes of guinea pigs.
    Hegazy E; Schwenk M
    J Nutr; 1983 Sep; 113(9):1702-7. PubMed ID: 6886819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of L-carnitine, D-carnitine and acetyl-L-carnitine by isolated guinea-pig enterocytes.
    Gross CJ; Henderson LM; Savaiano DA
    Biochim Biophys Acta; 1986 May; 886(3):425-33. PubMed ID: 3708005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Choline influx across the brush border of guinea pig jejunum.
    Kuczler FJ; Nahrwold DL; Rose RC
    Biochim Biophys Acta; 1977 Feb; 465(1):131-7. PubMed ID: 836831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of intestinal transport of [3H]-demethylphalloin: comparative studies with phallotoxins and bile acids on isolated small intestinal cells and ileal brush border membrane vesicles.
    Petzinger E; Burckhardt G; Schwenk M; Faulstich H
    Naunyn Schmiedebergs Arch Pharmacol; 1982 Aug; 320(2):196-200. PubMed ID: 7121618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium ion transport in isolated intestinal epithelial cells. II. Comparison of the effect of actively transported sugars on sodium ion efflux in cells isolated from jejunum and ileum.
    Gall DG; Chapman D
    Biochim Biophys Acta; 1976 Jan; 419(2):314-9. PubMed ID: 1247558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of starvation on neutral amino acid transport in isolated small-intestinal cells from guinea pigs.
    Muñíz R; Burguillo L; del Castillo JR
    Pflugers Arch; 1993 Apr; 423(1-2):59-66. PubMed ID: 8488093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on transmural potentials in vitro in relation to intestinal absorption. II. An effect of ouabain on glucose-dependent increment of transmural potential of rat small intestine.
    Lyon I; Crane RK
    Biochim Biophys Acta; 1966 Sep; 126(1):146-53. PubMed ID: 5970534
    [No Abstract]   [Full Text] [Related]  

  • 12. Cotransport of organic solutes and sodium ions in the small intestine: a general model. Amino acid transport.
    Alvarado F; Mahmood A
    Biochemistry; 1974 Jul; 13(14):2882-90. PubMed ID: 4407616
    [No Abstract]   [Full Text] [Related]  

  • 13. Thiamine outflow from the enterocyte: a study using basolateral membrane vesicles from rat small intestine.
    Laforenza U; Gastaldi G; Rindi G
    J Physiol; 1993 Aug; 468():401-12. PubMed ID: 8254515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal development of intestinal bile salt transport in the guinea pig.
    Heubi JE; Fondacaro JD
    Am J Physiol; 1982 Sep; 243(3):G189-94. PubMed ID: 7114261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action of ouabain on the contraction of ileal longitudinal muscle by manganese ions in a Ca(2+)-free, high-K(+), Na(+)-sufficient or Na(+)-deficient solution.
    Nasu T; Shibata A
    Pharmacol Res; 2000 Dec; 42(6):511-5. PubMed ID: 11058401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory volume increase in mammalian jejunal villus cells is due to bumetanide-sensitive NaKCl2 cotransport.
    MacLeod RJ; Hamilton JR
    Am J Physiol; 1990 May; 258(5 Pt 1):G665-74. PubMed ID: 2333994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolated intestinal cells of guinea pig: a suitable model for assessing direct toxic effects of ethanol on the mucosa of the upper small intestine.
    Lopez del Pino V; Hegazy E; Hauber G; Remmer H; Schwenk M
    Arch Toxicol Suppl; 1983; 6():322-6. PubMed ID: 6578740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of intestinal glucose absorption on sodium, studied with a new arterial infusion technique.
    Fisher RB; Gardner ML
    J Physiol; 1974 Aug; 241(1):235-60. PubMed ID: 4422318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of L-citrulline transport across rat small intestine in vitro.
    Vadgama JV; Evered DF
    Pediatr Res; 1992 Oct; 32(4):472-8. PubMed ID: 1437402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K+ transport in isolated guinea pig colonocytes: evidence for Na(+)-independent ouabain-sensitive K+ pump.
    Del Castillo JR; Súlbaran-Carrasco MC; Burguillos L
    Am J Physiol; 1994 Jun; 266(6 Pt 1):G1083-9. PubMed ID: 8023940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.