These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6502697)

  • 1. Relationship between the shape and the membrane potential of human red blood cells.
    Bifano EM; Novak TS; Freedman JC
    J Membr Biol; 1984; 82(1):1-13. PubMed ID: 6502697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane potentials associated with Ca-induced K conductance in human red blood cells: studies with a fluorescent oxonol dye, WW 781.
    Freedman JC; Novak TS
    J Membr Biol; 1983; 72(1-2):59-74. PubMed ID: 6406671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage dependence of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin.
    Freedman JC; Novak TS; Bisognano JD; Pratap PR
    J Gen Physiol; 1994 Nov; 104(5):961-83. PubMed ID: 7533207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-induced oscillations in K+ conductance and membrane potential of human erythrocytes mediated by the ionophore A23187.
    Vestergaard-Bogind B; Bennekou P
    Biochim Biophys Acta; 1982 May; 688(1):37-44. PubMed ID: 6284234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe.
    Hoffman JF; Laris PC
    J Physiol; 1974 Jun; 239(3):519-52. PubMed ID: 4851321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of valinomycin induced membrane potential on erythrocyte shape.
    Glaser R; Gengnagel C; Donath J
    Biomed Biochim Acta; 1991; 50(7):869-77. PubMed ID: 1759965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential difference and the distribution of ions across the human red blood cell membrane; a study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential.
    Hladky SB; Rink TJ
    J Physiol; 1976 Dec; 263(2):287-319. PubMed ID: 14255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymphocyte membrane potential assessed with fluorescent probes.
    Rink TJ; Montecucco C; Hesketh TR; Tsien RY
    Biochim Biophys Acta; 1980; 595(1):15-30. PubMed ID: 6153065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of calcium on the membrane potential of Amphiuma red cells.
    Lassen UV; Pape L; Vestergaard-Bogind B
    J Membr Biol; 1976 Feb; 26(1):51-70. PubMed ID: 3652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrodiffusion, barrier, and gating analysis of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin.
    Freedman JC; Novak TS
    J Gen Physiol; 1997 Feb; 109(2):201-16. PubMed ID: 9041449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium, cell shrinkage, and prolytic state of human red blood cells.
    Crespo LM; Novak TS; Freedman JC
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C138-52. PubMed ID: 3103462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.
    Dyrda A; Cytlak U; Ciuraszkiewicz A; Lipinska A; Cueff A; Bouyer G; Egée S; Bennekou P; Lew VL; Thomas SL
    PLoS One; 2010 Feb; 5(2):e9447. PubMed ID: 20195477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of vanadate-sensitive Mg(2+)-ATPase and shape change in intact red blood cells.
    Xu YH; Lu ZY; Conigrave AD; Auland ME; Roufogalis BD
    J Cell Biochem; 1991 Aug; 46(4):284-90. PubMed ID: 1836790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The shape of red blood cells as a function of membrane potential and temperature.
    Glaser R
    J Membr Biol; 1979 Dec; 51(3-4):217-28. PubMed ID: 43897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charybdotoxin blocks with high affinity the Ca-activated K+ channel of Hb A and Hb S red cells: individual differences in the number of channels.
    Wolff D; Cecchi X; Spalvins A; Canessa M
    J Membr Biol; 1988 Dec; 106(3):243-52. PubMed ID: 2468777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria.
    Freedman JC; Hoffman JF
    J Gen Physiol; 1979 Aug; 74(2):187-212. PubMed ID: 39969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma].
    Babich LG; Fomin VP; Kosterin SA
    Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-induced transient potassium efflux in human red blood cells.
    Adorante JS; Macey RI
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C55-64. PubMed ID: 3079961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two mechanisms by which fluorescent oxonols indicate membrane potential in human red blood cells.
    Pratap PR; Novak TS; Freedman JC
    Biophys J; 1990 Apr; 57(4):835-49. PubMed ID: 1693090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of valinomycin, A23187 and repetitive sickling on irreversible sickle cell formation.
    Westerman MP; Allan D
    Br J Haematol; 1983 Mar; 53(3):399-409. PubMed ID: 6402002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.