BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6503622)

  • 1. Phospholipid studies of marine organisms: new branched fatty acids from Strongylophora durissima.
    Dasgupta A; Ayanoglu E; Djerassi C
    Lipids; 1984 Oct; 19(10):768-76. PubMed ID: 6503622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholpid studies of marine organisms: 2.(1) Phospholipids, phospholipid-bound fatty acids and free sterols of the spongeAplysina fistularis (Pallas) formafulva (Pallas) (=Verongia thiona)(2). Isolation and structure elucidation of unprecedented branched fatty acids.
    Walkup RD; Jamieson GC; Ratcliff MR; Djerassi C
    Lipids; 1981 Sep; 16(9):631-46. PubMed ID: 27519233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis.
    Garson MJ; Zimmermann MP; Battershill CN; Holden JL; Murphy PT
    Lipids; 1994 Jul; 29(7):509-16. PubMed ID: 7968273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the new 18-hexacosenoic acid in the sponge Thalysias juniperina.
    Carballeira NM; Shalabi F; Maldonado ME
    Lipids; 1990 Apr; 25(4):235-7. PubMed ID: 2345497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipid fatty acids and sterols of two Cinachyrella sponges from the Saudi Arabian Red Sea: comparison with Cinachyrella species from other origins.
    Barnathan G; Genin E; Velosaotsy NE; Kornprobst JM; Al-Lihaibi S; Al-Sofyani A; Nongonierma R
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Jun; 135(2):297-308. PubMed ID: 12798940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid studies of marine organisms: V(1) new α-methoxy acids fromHigginsia tethyoides.
    Ayanoglu E; Popov S; Kornprobst JM; Aboud-Bichara A; Djerassi C
    Lipids; 1983 Nov; 18(11):830-6. PubMed ID: 27519988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-Hydroxy fatty acids from marine sponges. 2. The phospholipid fatty acids of the Caribbean sponges Verongula gigantea and Aplysina archeri.
    Carballeira NM; Shalabi F; Negrón V
    Lipids; 1989 Mar; 24(3):229-32. PubMed ID: 2761357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of unusual membrane phospholipids in the marine sponge Microciona prolifera.
    Lam WK; Beatty MF; Hahn S; Djerassi C
    Biochemistry; 1991 Jan; 30(2):372-7. PubMed ID: 1988036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment of saturated fatty acid containing phospholipids in sheep brain serotonin receptor preparations: use of microwave irradiation for rapid transesterification of phospholipids.
    Banerjee P; Dawson G; Dasgupta A
    Biochim Biophys Acta; 1992 Sep; 1110(1):65-74. PubMed ID: 1390837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of novel 2-hydroxy fatty acids from the phospholipids of the sponge Smenospongia aurea.
    Carballeira NM; Emiliano A; Rodriguez J; Reyes ED
    Lipids; 1992 Sep; 27(9):681-5. PubMed ID: 1487966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel brominated phospholipid fatty acids from the Caribbean sponge Petrosia sp.
    Carballeira NM; Shalabi F
    J Nat Prod; 1993 May; 56(5):739-46. PubMed ID: 8326322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the isolation of the new fatty acid 6,11-eicosadienoic (20:2) and related 6,11-dienoic acids from the sponge Euryspongia rosea.
    Carballeira NM; Maldonado ME
    Lipids; 1989 Jul; 24(7):665-8. PubMed ID: 2779374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-induced phospholipid hydrolysis in isolated pancreatic islets: quantitative effects on the phospholipid content of arachidonate and other fatty acids.
    Turk J; Wolf BA; Lefkowith JB; Stump WT; McDaniel ML
    Biochim Biophys Acta; 1986 Dec; 879(3):399-409. PubMed ID: 3535899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two novel phospholipid fatty acids from the Caribbean sponge Geodia gibberosa.
    Carballeira NM; Rodriguez J
    Lipids; 1991 Apr; 26(4):324-6. PubMed ID: 1865768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel cyclopropane fatty acids from the phospholipids of the Caribbean sponge Pseudospongosorites suberitoides.
    Carballeira NM; Montano N; Vicente J; Rodriguez AD
    Lipids; 2007 Jun; 42(6):519-24. PubMed ID: 17520308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New unsaturated long-chain fatty acids in the phospholipids from the Axinellida sponges Trikentrion loeve and Pseudaxinella cf. lunaecharta.
    Barnathan G; Kornprobst JM; Doumenq P; Miralles J
    Lipids; 1996 Feb; 31(2):193-200. PubMed ID: 8835408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid composition of the granular amebocyte from the horseshoe crab, Limulus polyphemus.
    MacPherson JC; Pavlovich JG; Jacobs RS
    Lipids; 1998 Sep; 33(9):931-40. PubMed ID: 9778141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New methoxylated fatty acids from the Caribbean sponge Callyspongia fallax.
    Carballeira NM; Pagán M
    J Nat Prod; 2001 May; 64(5):620-3. PubMed ID: 11374956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus-response coupling in marine sponge cell aggregation: lipid metabolism and the function of exogenously added arachidonic and docosahexaenoic acids.
    Weissmann G; Riesen W; Davidson S; Waite M
    Biochim Biophys Acta; 1988 Jun; 960(3):351-64. PubMed ID: 2968121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-salt diet alters the phospholipid composition of rat colonocytes.
    Mrnka L; Nováková O; Novák F; Tvrzická E; Pácha J
    Physiol Res; 2000; 49(2):197-205. PubMed ID: 10984084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.