These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 6503893)

  • 1. Role of substrates and nucleotides in phosphate uptake by rabbit renal cortical cells.
    Sakhrani LM; Tessitore N; Massry SG
    Miner Electrolyte Metab; 1984; 10(6):391-7. PubMed ID: 6503893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between tricarboxylic acid cycle intermediates and phosphate uptake by proximal renal cells and renal brush border membranes.
    Sakhrani LM; Tessitore N; Wright SH; Varner D; Massry SG
    Miner Electrolyte Metab; 1985; 11(6):345-50. PubMed ID: 4069084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of phosphate transport in the proximal tubule by metabolic substrates.
    Gullans SR; Brazy PC; Mandel LJ; Dennis VW
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F582-7. PubMed ID: 6496686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of tamoxifen on gluconeogenesis and glycolysis in the perfused rat liver.
    Marek CB; Peralta RM; Itinose AM; Bracht A
    Chem Biol Interact; 2011 Aug; 193(1):22-33. PubMed ID: 21570382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulatory effect of thyroid hormones on uptake of phosphate and other solutes across luminal brush border membrane of kidney cortex.
    Yusufi AN; Murayama N; Keller MJ; Dousa TP
    Endocrinology; 1985 Jun; 116(6):2438-49. PubMed ID: 2986951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific inhibition of rat renal Na+/phosphate cotransport by picolinamide.
    Campbell PI; al-Mahrouq HA; Abraham MI; Kempson SA
    J Pharmacol Exp Ther; 1989 Oct; 251(1):188-92. PubMed ID: 2529366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the regulation of renal gluconeogenesis in normal and Pi depleted proximal tubule cells.
    Nakagawa T; Butterworth PJ
    Cell Biochem Funct; 1990 Jan; 8(1):31-8. PubMed ID: 2340630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal cell metabolism in phosphate depletion: adenine nucleotide metabolism and gluconeogenesis.
    Kurokawa K; Kreusser WJ
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():336-42. PubMed ID: 616368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphophloretin sensitivity of rabbit renal NaPi-IIa and NaPi-Ia.
    Peerce BE; Peerce B; Clarke RD
    Am J Physiol Renal Physiol; 2004 May; 286(5):F955-64. PubMed ID: 15075191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycerol and lactate induce reciprocal changes in glucose formation and glutamine production in isolated rabbit kidney-cortex tubules incubated with aspartate.
    Lietz T; Bryła J
    Arch Biochem Biophys; 1995 Aug; 321(2):501-9. PubMed ID: 7646077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nephrotoxic and peroxidative potential of meropenem and imipenem/cilastatin in rat and human renal cortical slices and microsomes.
    Yousif T; Pooyeh S; Hannemann J; Baumann J; Tauber R; Baumann K
    Int J Clin Pharmacol Ther; 1999 Oct; 37(10):475-86. PubMed ID: 10543314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does phosphorylation affect transport of inorganic phosphate?
    Mary PL; Rao JP
    Clin Exp Pharmacol Physiol; 1994 Jan; 21(1):63-6. PubMed ID: 8156654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. alpha-Methyl-D-glucoside uptake in renal cortical slices of normal and alloxan diabetic rabbits.
    Fonteles MC; Pillion DJ; Leibach FH
    Arch Int Physiol Biochim; 1979 May; 87(2):245-52. PubMed ID: 92922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of energy production to gluconeogenesis in renal cortical tubules.
    Suzuki T; de Hartog M; Gordon EE
    J Cell Physiol; 1975 Aug; 86(1):111-9. PubMed ID: 1176538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between D-glucose and phosphate in renal proximal tubule cells.
    Brazy P; Chobanian MC
    Kidney Int Suppl; 1996 Dec; 57():S30-4. PubMed ID: 8941919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance of proximal and distal cell functions in SV40-transformed tubular cell lines derived from rabbit kidney cortex.
    Vandewalle A; Lelongt B; Geniteau-Legendre M; Baudouin B; Antoine M; Estrade S; Chatelet F; Verroust P; Cassingena R; Ronco P
    J Cell Physiol; 1989 Oct; 141(1):203-21. PubMed ID: 2550481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of cyclic nucleotides on glucose synthesis in isolated rat kidney tubules.
    Guder W; Wieland O
    Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):291-2. PubMed ID: 4316051
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of P2Y-purinoceptor stimulation on renal gluconeogenesis in rats.
    Cha SH; Jung KY; Endou H
    Biochem Biophys Res Commun; 1995 Jun; 211(2):454-61. PubMed ID: 7794257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of selegiline on glucose synthesis in rabbit kidney-cortex tubules and hepatocytes. In vitro and in vivo studies.
    Drozak J; Kozlowski M; Doroszewska R; Pera L; Derlacz R; Jarzyna R; Bryla J
    Chem Biol Interact; 2007 Dec; 170(3):162-76. PubMed ID: 17767924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol - characterization of a glutathione- and NAD-dependent arsenate reduction linked to glycolysis.
    Németi B; Gregus Z
    Toxicol Sci; 2005 Jun; 85(2):847-58. PubMed ID: 15788720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.