These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 6504261)

  • 1. [Disturbances of hydrogen electron transport system and free radical reactions after severe spinal cord injury].
    Hayashi N; Tsubokawa T; Abe K; Green BA
    No Shinkei Geka; 1984 Aug; 12(9):1039-46. PubMed ID: 6504261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Changes in energy metabolism and spinal cord blood flow following severe spinal cord injury].
    Hayashi N; Tsubokawa T; Green BA
    No Shinkei Geka; 1984 Jul; 12(8):923-30. PubMed ID: 6483099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Efficiency of coenzyme Q(10) at experimental spinal cord injury].
    Kerimoğlu A; Paşaoğlu O; Kanbak G; Hanci V; Ozdemir F; Atasoy MA
    Ulus Travma Acil Cerrahi Derg; 2007 Apr; 13(2):85-93. PubMed ID: 17682949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-level relationship for nitric oxide and the protective effects of aminoguanidine in experimental spinal cord injury.
    Soy O; Aslan O; Uzun H; Barut S; Iğdem AA; Belce A; Colak A
    Acta Neurochir (Wien); 2004 Dec; 146(12):1329-35; discussion 1335-6. PubMed ID: 15309585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impairment of the mitochondrial respiratory enzyme activity triggers sequential activation of apoptosis-inducing factor-dependent and caspase-dependent signaling pathways to induce apoptosis after spinal cord injury.
    Wu KL; Hsu C; Chan JY
    J Neurochem; 2007 Jun; 101(6):1552-66. PubMed ID: 17298387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radicals in CNS injury.
    Hall ED; Braughler JM
    Res Publ Assoc Res Nerv Ment Dis; 1993; 71():81-105. PubMed ID: 8380240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet blood irradiation and oxygenation affects free radicals and antioxidase after rabbit spinal cord injury.
    Dong Y; Shou T; Zhou Y; Jiang S; Hua X
    Chin Med J (Engl); 2000 Nov; 113(11):991-5. PubMed ID: 11776133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic changes in rabbit spinal cord after trauma: magnetic resonance spectroscopy studies.
    Vink R; Noble LJ; Knoblach SM; Bendall MR; Faden AI
    Ann Neurol; 1989 Jan; 25(1):26-31. PubMed ID: 2913925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of prostaglandin E1, melatonin, and oxytetracycline on lipid peroxidation, antioxidant defense system, paraoxonase (PON1) activities, and homocysteine levels in an animal model of spinal cord injury.
    Topsakal C; Kilic N; Ozveren F; Akdemir I; Kaplan M; Tiftikci M; Gursu F
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1643-52. PubMed ID: 12897486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the levels of coenzyme Q homologues, alpha-tocopherol and malondialdehyde in human tissue during the course of circulatory shock.
    Corbucci GG; Gasparetto A; Antonelli M; Bufi M; De Blasi RA
    Int J Tissue React; 1986; 8(5):421-30. PubMed ID: 3023253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyl radicals generated in the rat spinal cord at the level produced by impact injury induce cell death by necrosis and apoptosis: protection by a metalloporphyrin.
    Bao F; Liu D
    Neuroscience; 2004; 126(2):285-95. PubMed ID: 15207346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Experimental study of acute spinal cord injury: a histopathological study].
    Kawata K; Morimoto T; Ohashi T; Tsujimoto S; Hoshida T; Tsunoda S; Sakaki T
    No Shinkei Geka; 1993 Jan; 21(1):45-51. PubMed ID: 8426687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The multiple functions of coenzyme Q.
    Nohl H; Kozlov AV; Staniek K; Gille L
    Bioorg Chem; 2001 Feb; 29(1):1-13. PubMed ID: 11300690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro free radical metabolism of phenolphthalein by peroxidases.
    Sipe HJ; Corbett JT; Mason RP
    Drug Metab Dispos; 1997 Apr; 25(4):468-80. PubMed ID: 9107547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by two-electron reduction of ubiquinone and one-electron reduction of ubisemiquinone.
    Kozlov AV; Gille L; Staniek K; Nohl H
    Arch Biochem Biophys; 1999 Mar; 363(1):148-54. PubMed ID: 10049509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosion casts. Part 2: Acute spinal cord injury.
    Koyanagi I; Tator CH; Lea PJ
    Neurosurgery; 1993 Aug; 33(2):285-91; discussion 292. PubMed ID: 8367052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of coenzyme Q10 and vitamin E on brain energy metabolism in the animal model of Huntington's disease.
    Kasparová S; Sumbalová Z; Bystrický P; Kucharská J; Liptaj T; Mlynárik V; Gvozdjáková A
    Neurochem Int; 2006 Jan; 48(2):93-9. PubMed ID: 16290265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant.
    Beyer RE
    Biochem Cell Biol; 1992 Jun; 70(6):390-403. PubMed ID: 1333230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of thrombospondin-1 and transforming growth factor-beta after spinal cord injury in the rat.
    Wang X; Chen W; Liu W; Wu J; Shao Y; Zhang X
    J Clin Neurosci; 2009 Jun; 16(6):818-21. PubMed ID: 19342245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.