These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6504284)

  • 21. Ventricular volume in infantile hydrocephalus and its relationship to intracranial pressure and cerebrospinal fluid clearance before and after treatment. A preliminary study.
    Maixner WJ; Morgan MK; Besser M; Johnston IH
    Pediatr Neurosurg; 1990-1991; 16(4-5):191-6. PubMed ID: 2135185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new look at hydrocephalic shunting.
    Samuelson GH; Spitz EB
    Surg Neurol; 1973 Nov; 1(6):347-50. PubMed ID: 4758256
    [No Abstract]   [Full Text] [Related]  

  • 23. Advanced diffusion models in head and neck squamous cell carcinoma patients: Goodness of fit, relationships among diffusion parameters and comparison with dynamic contrast-enhanced perfusion.
    Fujima N; Sakashita T; Homma A; Shimizu Y; Yoshida A; Harada T; Tha KK; Kudo K; Shirato H
    Magn Reson Imaging; 2017 Feb; 36():16-23. PubMed ID: 27989906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of respiratory movement on cerebrospinal fluid dynamics in hydrocephalic infants with shunts.
    Yamada H; Tajima M; Nagaya M
    J Neurosurg; 1975 Feb; 42(2):194-200. PubMed ID: 1113154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Postural changes in intracranial pressure in chronically shunted patients.
    Barami K; Sood S; Ham SD; Canady AI
    Pediatr Neurosurg; 2000 Aug; 33(2):64-9. PubMed ID: 11070431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracranial pressure, its components and cerebrospinal fluid pressure-volume compensation.
    Kasprowicz M; Lalou DA; Czosnyka M; Garnett M; Czosnyka Z
    Acta Neurol Scand; 2016 Sep; 134(3):168-80. PubMed ID: 26666840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Diagnosis and clinical features of infants with congenital hydrocephalus--correlation between intracranial pressure buffering capacity and indication for ventriculoperitoneal shunt].
    Sato K; Bandoh K; Wachi A
    No To Hattatsu; 1994 May; 26(3):222-6. PubMed ID: 8185974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Intracranial Volume Pressure Response in Increased Intracranial Pressure Patients: Clinical Significance of the Volume Pressure Indicator.
    Lai HY; Lee CH; Lee CY
    PLoS One; 2016; 11(10):e0164263. PubMed ID: 27723794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic model of communicating hydrocephalus for surgery simulation.
    Clatz O; Litrico S; Delingette H; Paquis P; Ayache N
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):755-8. PubMed ID: 17405384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between ventricular morphology and aqueductal cerebrospinal fluid flow in healthy and communicating hydrocephalus.
    Chiang WW; Takoudis CG; Lee SH; Weis-McNulty A; Glick R; Alperin N
    Invest Radiol; 2009 Apr; 44(4):192-9. PubMed ID: 19300098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus.
    Welch K
    Adv Neurol; 1975; 13():247-332. PubMed ID: 766597
    [No Abstract]   [Full Text] [Related]  

  • 32. Ventriculolymphatic shunt and decompensated intracranial volume-pressure relationship.
    Vajda J; Horváth M; Nyáry I
    Acta Neurochir Suppl (Wien); 1979; 28(2):521-5. PubMed ID: 290249
    [No Abstract]   [Full Text] [Related]  

  • 33. [Analysis of the correlations of volume-pressure parameters and visual evoked potentials during disturbances of intracranial volume compensation].
    Jurkiewicz J; Czernicki Z; Pawłowski G; Matysiak E
    Neurol Neurochir Pol; 1991; 25(5):567-73. PubMed ID: 1808515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.
    Pennell T; Yi JL; Kaufman BA; Krishnamurthy S
    J Neurosurg Pediatr; 2016 Mar; 17(3):270-7. PubMed ID: 26565943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parameter estimations for the cerebrospinal fluid infusion test.
    Eisenträger A; Sobey I; Czosnyka M
    Math Med Biol; 2013 Jun; 30(2):157-74. PubMed ID: 22345141
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical and hydrodynamic characterization of the hydrocephalic infant.
    Shapiro K; Fried A; Marmarou A
    J Neurosurg; 1985 Jul; 63(1):69-75. PubMed ID: 4009277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Clinical significance of measurement of pressure volume index, outflow resistance of cerebrospinal fluid and absorption pressure in infantile hydrocephalus].
    Bandoh K; Wachi A; Sato K
    No To Hattatsu; 1993 May; 25(3):240-7. PubMed ID: 8517984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A laboratory model of shunt-dependent hydrocephalus. Development and biomechanical characterization.
    Fried A; Shapiro K; Takei F; Kohn I
    J Neurosurg; 1987 May; 66(5):734-40. PubMed ID: 3572499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The intracranial volume pressure response in increased intracranial pressure patients: Part 1. Calculation of the volume pressure indicator.
    Lai HY; Lee CY; Hsu HH; Lee ST
    Acta Neurochir (Wien); 2012 Dec; 154(12):2271-5; discussion 2275. PubMed ID: 20714759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.