These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 6505681)
1. Initiation of behavior by single neurons: the role of behavioral context. Nolen TG; Hoy RR Science; 1984 Nov; 226(4677):992-4. PubMed ID: 6505681 [TBL] [Abstract][Full Text] [Related]
2. Integration of ultrasound and flight inputs on descending neurons in the cricket brain. Brodfuehrer PD; Hoy RR J Exp Biol; 1989 Sep; 145():157-71. PubMed ID: 2809494 [TBL] [Abstract][Full Text] [Related]
4. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song. Nolen TG; Hoy RR J Comp Physiol A; 1986 Oct; 159(4):441-56. PubMed ID: 3783497 [TBL] [Abstract][Full Text] [Related]
6. Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors. Nolen TG; Hoy RR J Comp Physiol A; 1986 Oct; 159(4):423-39. PubMed ID: 3783496 [TBL] [Abstract][Full Text] [Related]
8. Hearing in mole crickets (Orthoptera: Gryllotalpidae) at sonic and ultrasonic frequencies. Mason AC; Forrest TG; Hoy RR J Exp Biol; 1998 Jun; 201(Pt 12):1967-79. PubMed ID: 9722432 [TBL] [Abstract][Full Text] [Related]
9. Ultrasound-induced yaw movements in the flying Australian field cricket (Teleogryllus oceanicus). May ML; Hoy RR J Exp Biol; 1990 Mar; 149():177-89. PubMed ID: 2324670 [TBL] [Abstract][Full Text] [Related]
10. Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats. Fullard JH; Ratcliffe JM; Guignion C J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jul; 191(7):605-18. PubMed ID: 15886992 [TBL] [Abstract][Full Text] [Related]
11. Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. Hedwig B J Neurophysiol; 2000 Feb; 83(2):712-22. PubMed ID: 10669487 [TBL] [Abstract][Full Text] [Related]
13. Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets. Brodfuehrer PD; Hoy RR J Neurobiol; 1988 Jan; 19(1):17-38. PubMed ID: 3346652 [TBL] [Abstract][Full Text] [Related]
14. Loss of inhibitory synaptic input to cricket sensory interneurons as a consequence of partial deafferentation. Levine RB; Murphey RK J Neurophysiol; 1980 Feb; 43(2):383-94. PubMed ID: 7381527 [TBL] [Abstract][Full Text] [Related]
15. Single gene cricket mutations: effects on behavior, sensilla, sensory neurons, and identified interneurons. Bentley D Science; 1975 Feb; 187(4178):760-4. PubMed ID: 1114323 [TBL] [Abstract][Full Text] [Related]
16. Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects. Kittmann R; Schmitz J; Büschges A J Neurobiol; 1996 Dec; 31(4):512-32. PubMed ID: 8951108 [TBL] [Abstract][Full Text] [Related]
17. Alteration of bursting properties in interneurons during locust flight. Ramirez JM; Pearson KG J Neurophysiol; 1993 Nov; 70(5):2148-60. PubMed ID: 8294976 [TBL] [Abstract][Full Text] [Related]
18. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system. Wolf H; Büschges A J Neurophysiol; 1997 Sep; 78(3):1276-84. PubMed ID: 9310419 [TBL] [Abstract][Full Text] [Related]
19. Kinematic and aerodynamic aspects of ultrasound-induced negative phonotaxis inflying Australian field crickets (Teleogryllus oceanicus). May ML; Brodfuehrer PD; Hoy RR J Comp Physiol A; 1988 Dec; 164(2):243-9. PubMed ID: 3244130 [TBL] [Abstract][Full Text] [Related]
20. Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust. Reichert H; Rowell CH J Neurophysiol; 1985 May; 53(5):1201-18. PubMed ID: 2987432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]