These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 6505843)

  • 1. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs.
    Koeller W; Meier W; Hartmann F
    Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression.
    Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP
    J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading.
    Koeller W; Funke F; Hartmann F
    Biorheology; 1984; 21(5):675-86. PubMed ID: 6518283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression--influence of age and degeneration.
    Koeller W; Muehlhaus S; Meier W; Hartmann F
    J Biomech; 1986; 19(10):807-16. PubMed ID: 3782163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creep bulging deformation of intervertebral disc under axial compression.
    Pei BQ; Li H; Li DY; Fan YB; Wang C; Wu SQ
    Biomed Mater Eng; 2014; 24(1):191-8. PubMed ID: 24211898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anterior thoracic posture increases thoracolumbar disc loading.
    Harrison DE; Colloca CJ; Harrison DD; Janik TJ; Haas JW; Keller TS
    Eur Spine J; 2005 Apr; 14(3):234-42. PubMed ID: 15168237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphologic comparison of cervical, thoracic, lumbar intervertebral discs of cynomolgus monkey (Macaca fascicularis).
    Longo UG; Ripalda P; Denaro V; Forriol F
    Eur Spine J; 2006 Dec; 15(12):1845-51. PubMed ID: 16374650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Elastomechanic behaviour of human intervertebral discs during static compression (author's transl)].
    Plaue R; Gerner HJ; Salditt R
    Arch Orthop Unfallchir; 1974; 79(2):139-48. PubMed ID: 4848624
    [No Abstract]   [Full Text] [Related]  

  • 11. Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine.
    Keller TS; Colloca CJ; Harrison DE; Harrison DD; Janik TJ
    Spine J; 2005; 5(3):297-309. PubMed ID: 15863086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of hydration on the stiffness of intervertebral discs in an ovine model.
    Costi JJ; Hearn TC; Fazzalari NL
    Clin Biomech (Bristol); 2002 Jul; 17(6):446-55. PubMed ID: 12135546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of intradiscal pressures below thoracolumbar spinal fusion constructs: is there evidence to support "saving a level"?
    Auerbach JD; Lonner BS; Errico TJ; Freeman A; Goerke D; Beaubien BP
    Spine (Phila Pa 1976); 2012 Mar; 37(5):359-66. PubMed ID: 21540780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol.
    Goel VK; Grauer JN; Patel TCh; Biyani A; Sairyo K; Vishnubhotla S; Matyas A; Cowgill I; Shaw M; Long R; Dick D; Panjabi MM; Serhan H
    Spine (Phila Pa 1976); 2005 Dec; 30(24):2755-64. PubMed ID: 16371899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ratio of thoracic to lumbar compression force is posture dependent.
    Lee PJ; Lee EL; Hayes WC
    Ergonomics; 2013; 56(5):832-41. PubMed ID: 23510145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments.
    van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH
    J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic analysis of the space available for cord and disc bulging of the thoracic spine using kinematic magnetic resonance imaging (kMRI).
    Paholpak P; Shah I; Acevedo-Moreno LA; Tamai K; Wang JC; Buser Z
    Spine J; 2018 Jul; 18(7):1122-1127. PubMed ID: 29154999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice.
    Bailey JF; Hargens AR; Cheng KK; Lotz JC
    J Biomech; 2014 Sep; 47(12):2983-8. PubMed ID: 25085756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-structure and mechanical properties of annulus fibrous of the L4-5 and L5-S1 intervertebral discs.
    Zhu D; Gu G; Wu W; Gong H; Zhu W; Jiang T; Cao Z
    Clin Biomech (Bristol); 2008; 23 Suppl 1():S74-82. PubMed ID: 18499316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro disc pressure profiles below scoliosis fusion constructs.
    Buttermann GR; Beaubien BP
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2134-42. PubMed ID: 18794754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.