These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 6505843)
41. [The physiological pattern of lumbar intervertebral disk height]. Biggemann M; Frobin W; Brinckmann P Rofo; 1997 Jul; 167(1):11-5. PubMed ID: 9289036 [TBL] [Abstract][Full Text] [Related]
42. Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. Izambert O; Mitton D; Thourot M; Lavaste F Eur Spine J; 2003 Dec; 12(6):562-6. PubMed ID: 14605972 [TBL] [Abstract][Full Text] [Related]
43. Lymphatic involvement in vertebral and disc pathology. Kashima TG; Dongre A; Athanasou NA Spine (Phila Pa 1976); 2011 May; 36(11):899-904. PubMed ID: 21343852 [TBL] [Abstract][Full Text] [Related]
44. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs. Kemper AR; McNally C; Duma SM Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077 [TBL] [Abstract][Full Text] [Related]
45. Height change caused by creep in intervertebral discs: a sagittal plane model. Keller TS; Nathan M J Spinal Disord; 1999 Aug; 12(4):313-24. PubMed ID: 10451048 [TBL] [Abstract][Full Text] [Related]
46. Changes in intervertebral disc cross-sectional area with bed rest and space flight. LeBlanc AD; Evans HJ; Schneider VS; Wendt RE; Hedrick TD Spine (Phila Pa 1976); 1994 Apr; 19(7):812-7. PubMed ID: 8202800 [TBL] [Abstract][Full Text] [Related]
47. Pressure distributions inside intervertebral discs under unilateral pedicle screw fixation in a porcine spine model. Meng Z; Wang C; Tian LJ; Zhang XJ; Guo D; Zou Y J Orthop Surg Res; 2018 Oct; 13(1):254. PubMed ID: 30326934 [TBL] [Abstract][Full Text] [Related]
48. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method. Guo LX; Li R; Zhang M Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902 [TBL] [Abstract][Full Text] [Related]
49. The mechanical properties of the canine lumbar disc and motion segment. Zimmerman MC; Vuono-Hawkins M; Parsons JR; Carter FM; Gutteling E; Lee CK; Langrana NA Spine (Phila Pa 1976); 1992 Feb; 17(2):213-20. PubMed ID: 1553593 [TBL] [Abstract][Full Text] [Related]
50. An in vivo magnetic resonance imaging study of changes in the volume (and fluid content) of the lumbar intervertebral discs during a simulated diurnal load cycle. Malko JA; Hutton WC; Fajman WA Spine (Phila Pa 1976); 1999 May; 24(10):1015-22. PubMed ID: 10332795 [TBL] [Abstract][Full Text] [Related]
51. The fluid content of the human intervertebral disc. Comparison between fluid content and swelling pressure profiles of discs removed at surgery and those taken postmortem. Johnstone B; Urban JP; Roberts S; Menage J Spine (Phila Pa 1976); 1992 Apr; 17(4):412-6. PubMed ID: 1579875 [TBL] [Abstract][Full Text] [Related]
52. Development of an organ culture system for long-term survival of the intact human intervertebral disc. Gawri R; Mwale F; Ouellet J; Roughley PJ; Steffen T; Antoniou J; Haglund L Spine (Phila Pa 1976); 2011 Oct; 36(22):1835-42. PubMed ID: 21270705 [TBL] [Abstract][Full Text] [Related]
53. Translational challenges for the development of a novel nucleus pulposus substitute: Experimental results from biomechanical and in vivo studies. Detiger SE; de Bakker JY; Emanuel KS; Schmitz M; Vergroesen PP; van der Veen AJ; Mazel C; Smit TH J Biomater Appl; 2016 Feb; 30(7):983-94. PubMed ID: 26494611 [TBL] [Abstract][Full Text] [Related]
54. In vivo diurnal variation in intervertebral disc volume and morphology. Botsford DJ; Esses SI; Ogilvie-Harris DJ Spine (Phila Pa 1976); 1994 Apr; 19(8):935-40. PubMed ID: 8009352 [TBL] [Abstract][Full Text] [Related]
55. Peak stresses observed in the posterior lateral anulus. Edwards WT; Ordway NR; Zheng Y; McCullen G; Han Z; Yuan HA Spine (Phila Pa 1976); 2001 Aug; 26(16):1753-9. PubMed ID: 11493846 [TBL] [Abstract][Full Text] [Related]
56. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments. Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622 [TBL] [Abstract][Full Text] [Related]
57. Coupled motions in human and porcine thoracic and lumbar spines. Kingma I; Busscher I; van der Veen AJ; Verkerke GJ; Veldhuizen AG; Homminga J; van Dieën JH J Biomech; 2018 Mar; 70():51-58. PubMed ID: 29246473 [TBL] [Abstract][Full Text] [Related]
58. The Effects of Physiological Biomechanical Loading on Intradiscal Pressure and Annulus Stress in Lumbar Spine: A Finite Element Analysis. Zahari SN; Latif MJA; Rahim NRA; Kadir MRA; Kamarul T J Healthc Eng; 2017; 2017():9618940. PubMed ID: 29065672 [TBL] [Abstract][Full Text] [Related]
59. Diurnal changes in spinal mechanics and their clinical significance. Adams MA; Dolan P; Hutton WC; Porter RW J Bone Joint Surg Br; 1990 Mar; 72(2):266-70. PubMed ID: 2138156 [TBL] [Abstract][Full Text] [Related]
60. The influence of the intervertebral disc on stress distribution of the thoracolumbar vertebrae under destructive load. Liu L; Pei F; Song Y; Zou L; Zhang C; Zhou Z Chin J Traumatol; 2002 Oct; 5(5):279-83. PubMed ID: 12241638 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]