These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6506114)

  • 1. Comparison of the effect of naloxone on cerebral versus mesenteric arterial smooth muscle in feline and primate species.
    Sasaki T; Kassell NF; Turner DM; Coester HC
    Stroke; 1984; 15(6):1025-8. PubMed ID: 6506114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of naloxone on canine splanchnic arterial smooth muscle.
    Sasaki T; Kassell NF; Turner DM; Torner JC; Coester HC
    Proc Soc Exp Biol Med; 1984 Dec; 177(3):422-7. PubMed ID: 6514718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of naloxone on canine cerebral vascular smooth muscle.
    Sasaki T; Kassell NF; Turner DM; Maixner W; Torner JC; Coester HC
    J Cereb Blood Flow Metab; 1984 Jun; 4(2):166-72. PubMed ID: 6725428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of ethanol and acetaldehyde on dog arterial smooth muscle.
    Toda N; Konishi M; Miyazaki M; Komura S
    J Stud Alcohol; 1983 Jan; 44(1):1-16. PubMed ID: 6865419
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of vasoconstrictor actions of endothelin-1 in cerebral, coronary, and mesenteric arteries of the dog.
    Tanoi C; Suzuki Y; Shibuya M; Sugita K; Masuzawa-Ito K; Asano M
    J Cardiovasc Pharmacol; 1992 Apr; 19(4):568-79. PubMed ID: 1380600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actions of a novel thromboxane A2-receptor antagonist, S-145, on isolated monkey and cat arteries.
    Nakajima M; Ueda M
    J Cardiovasc Pharmacol; 1989 Sep; 14(3):502-9. PubMed ID: 2476633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of glucagon on vasoconstriction and vascular escape from nerve- and norepinephrine-induced constriction of the hepatic artery of the cat.
    D'Almeida MS; Lautt WW
    Can J Physiol Pharmacol; 1989 Nov; 67(11):1418-25. PubMed ID: 2627682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential vascular actions of ethanol in feline middle cerebral and mesenteric artery.
    Faragó M; Szabó C; Horváth I; Dóra E; Kovách AG
    Acta Physiol Hung; 1991; 78(2):119-25. PubMed ID: 1808978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucagon pharmacodynamics and modulation of sympathetic nerve and norepinephrine-induced constrictor responses in the superior mesenteric artery of the cat.
    D'Almeida MS; Lautt WW
    J Pharmacol Exp Ther; 1991 Oct; 259(1):118-23. PubMed ID: 1920111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane electrical mechanism of basilar artery constriction and pial artery dilation by norepinephrine.
    Harder DR; Abel PW; Hermsmeyer K
    Circ Res; 1981 Dec; 49(6):1237-42. PubMed ID: 7307242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct effects of ketamine on isolated canine cerebral and mesenteric arteries.
    Fukuda S; Murakawa T; Takeshita H; Toda N
    Anesth Analg; 1983 Jun; 62(6):553-8. PubMed ID: 6846876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholinergic mechanism in the large cat cerebral artery.
    Lee TJ
    Circ Res; 1982 Jun; 50(6):870-9. PubMed ID: 7083486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha adrenergic receptor subtypes in human, monkey and dog cerebral arteries.
    Toda N
    J Pharmacol Exp Ther; 1983 Sep; 226(3):861-8. PubMed ID: 6310082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halothane does not protect against vascular injury in isolated cerebral and mesenteric arteries.
    Ogawa K; Tokinaga Y; Iwahashi S; Mizumoto K; Hatano Y
    Can J Anaesth; 2005 Oct; 52(8):870-7. PubMed ID: 16189341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional differences in the regulation of contraction-relaxation machinery of vascular smooth muscle.
    Kovach AG; Dora E; Farago M; Horvath IH; Szabo C
    Adv Exp Med Biol; 1989; 248():601-9. PubMed ID: 2782178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular responsiveness of isolated, perfused basilar arteries in dogs and monkeys.
    Chiba S; Tsuji T
    Tohoku J Exp Med; 1985 Jul; 146(3):363-70. PubMed ID: 3863264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatile anaesthetics attenuate hypocapnia-induced constriction in isolated dog cerebral arteries.
    Ogawa K; Yamamoto M; Mizumoto K; Hatano Y
    Can J Anaesth; 1997 Apr; 44(4):426-32. PubMed ID: 9104527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contraction and relaxation of rabbit basilar artery by thiopental.
    Gross CE; Abel PW
    Neurosurgery; 1985 Sep; 17(3):433-5. PubMed ID: 4047354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelin-1 acts in cerebral arteries from the adventitial but not from the luminal side.
    Shigeno T; Mima T; Takakura K; Yanagisawa M; Saito A; Goto K; Masaki T
    J Cardiovasc Pharmacol; 1989; 13 Suppl 5():S174-6. PubMed ID: 2473300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of indapamide on contractile responses and 45Ca2+ movements in various isolated blood vessels.
    Del Rio M; Chulia T; Gonzalez P; Tejerina T
    Eur J Pharmacol; 1993 Nov; 250(1):133-9. PubMed ID: 8119310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.