These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 6506487)

  • 1. Spatial properties of red-green and yellow-blue perceptual opponent-color response.
    Takahashi S; Ejima Y
    Vision Res; 1984; 24(9):987-94. PubMed ID: 6506487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hue scaling of isoluminant and cone-specific lights.
    De Valois RL; De Valois KK; Switkes E; Mahon L
    Vision Res; 1997 Apr; 37(7):885-97. PubMed ID: 9156186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bezold-Brücke hue shift and nonlinearity in opponent-color process.
    Ejima Y; Takahashi S
    Vision Res; 1984; 24(12):1897-904. PubMed ID: 6534013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and temporal properties of cone signals in alert macaque primary visual cortex.
    Conway BR; Livingstone MS
    J Neurosci; 2006 Oct; 26(42):10826-46. PubMed ID: 17050721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of light adaptation on the perceptual red-green and yellow-blue opponent-color responses.
    Takahashi S; Ejima Y; Akita M
    J Opt Soc Am A; 1985 May; 2(5):705-12. PubMed ID: 3998885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red-green and yellow-blue opponent-color responses as a function of retinal eccentricity.
    Hibino H
    Vision Res; 1992 Oct; 32(10):1955-64. PubMed ID: 1287992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between short- and longer-wavelength cones in hue cancellation codes: nonlinearities of hue cancellation as a function of stimulus intensity.
    Ejima Y; Takahashi S
    Vision Res; 1985; 25(12):1911-22. PubMed ID: 3832617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of primate retinal ganglion cells to moving spectral contrast.
    Gouras P; Eggers H
    Vision Res; 1983; 23(10):1175-82. PubMed ID: 6649436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apparent saturation of blue-sensitive cones occurs at a color-opponent stage.
    Stromeyer CF; Kronauer RE; Madsen JC
    Science; 1978 Oct; 202(4364):217-9. PubMed ID: 694527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red-green color discrimination as a function of stimulus field size in peripheral vision.
    Nagy AL; Doyal JA
    J Opt Soc Am A; 1993 Jun; 10(6):1147-56. PubMed ID: 8320585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of red and green flashes: evidence for cancellation and facilitation.
    Stromeyer CF; Khoo MC; Muggeridge D
    Sens Processes; 1978 Sep; 2(3):248-71. PubMed ID: 219546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opponent-color receptive-field profiles determined from large-area psychophysical measurements.
    Kelly DH
    J Opt Soc Am A; 1989 Nov; 6(11):1784-93. PubMed ID: 2585175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear codes for the yellow/blue mechanism.
    Elzinga CH; de Weert CM
    Vision Res; 1984; 24(9):911-22. PubMed ID: 6506479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina.
    Wool LE; Crook JD; Troy JB; Packer OS; Zaidi Q; Dacey DM
    J Neurosci; 2018 Feb; 38(6):1520-1540. PubMed ID: 29305531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relating cone signals to color appearance: failure of monotonicity in yellow/blue.
    Knoblauch K; Shevell SK
    Vis Neurosci; 2001; 18(6):901-6. PubMed ID: 12020080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new concept of retinal colour coding.
    Paulus W; Kröger-Paulus A
    Vision Res; 1983; 23(5):529-40. PubMed ID: 6880050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opponent hues in visual masking.
    Gamble M
    Percept Mot Skills; 1978 Jun; 46(3 Pt 1):979-83. PubMed ID: 673656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red-green) mechanism.
    Stromeyer CF; Chaparro A; Tolias AS; Kronauer RE
    J Physiol; 1997 Feb; 499 ( Pt 1)(Pt 1):227-54. PubMed ID: 9061652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptive field properties of color opponent neurons in the cat lateral geniculate nucleus.
    Buzás P; Kóbor P; Petykó Z; Telkes I; Martin PR; Lénárd L
    J Neurosci; 2013 Jan; 33(4):1451-61. PubMed ID: 23345221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A simple description of color adaptation in the red-green system].
    Bäuml KH
    Z Exp Angew Psychol; 1991; 38(3):343-64. PubMed ID: 1950018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.