These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 6507022)

  • 1. Viability of megakaryocytic and erythroid progenitors after cryopreservation in comparison with myeloid progenitors and multipotent stem cells.
    Nomura T; Kuriya S; Dan K; Horikoshi H; Kuwabara T
    Nihon Ketsueki Gakkai Zasshi; 1984 Jul; 47(4):919-25. PubMed ID: 6507022
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of cryopreservation on recovery of megakaryocytic colony-forming units in murine bone marrow.
    Nomura T; Kuriya S; Dan K
    Nihon Ketsueki Gakkai Zasshi; 1984 Jul; 47(4):1042-8. PubMed ID: 6507010
    [No Abstract]   [Full Text] [Related]  

  • 3. Cryopreservation of the human multipotent stem cell.
    Fabian I; Douer D; Wells JR; Cline MJ
    Exp Hematol; 1982 Jan; 10(1):119-22. PubMed ID: 7060656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of human blast progenitors from granulocytic, erythroid, megakaryocytic, and mixed colony-forming cells by "panning" on cultured marrow-derived stromal layers.
    Gordon MY; Hibbin JA; Dowding C; Gordon-Smith EC; Goldman JM
    Exp Hematol; 1985 Oct; 13(9):937-40. PubMed ID: 4043267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High sensitivity of megakaryocytic progenitor cells contained in placental/umbilical cord blood to the stresses during cryopreservation.
    Xu Y; Kashiwakura I; Takahashi TA
    Bone Marrow Transplant; 2004 Sep; 34(6):537-43. PubMed ID: 15273713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of non-cryopreservation on colony formation of committed progenitor cells of bone marrow.
    Tajima T
    Tokai J Exp Clin Med; 1988 Feb; 13(1):15-22. PubMed ID: 3068837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the cellular mechanisms of erythropoietin-thrombopoietin synergy.
    Papayannopoulou T; Brice M; Farrer D; Kaushansky K
    Exp Hematol; 1996 Apr; 24(5):660-9. PubMed ID: 8605971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgene insertion in proximity to the c-myb gene disrupts erythroid-megakaryocytic lineage bifurcation.
    Mukai HY; Motohashi H; Ohneda O; Suzuki N; Nagano M; Yamamoto M
    Mol Cell Biol; 2006 Nov; 26(21):7953-65. PubMed ID: 16940183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downregulation of signal transducer and activator of transcription 5 (STAT5) in CD34+ cells promotes megakaryocytic development, whereas activation of STAT5 drives erythropoiesis.
    Olthof SG; Fatrai S; Drayer AL; Tyl MR; Vellenga E; Schuringa JJ
    Stem Cells; 2008 Jul; 26(7):1732-42. PubMed ID: 18436865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The MS-5 murine stromal cell line and hematopoietic growth factors synergize to support the megakaryocytic differentiation of embryonic stem cells.
    Berthier R; Prandini MH; Schweitzer A; Thevenon D; Martin-Sisteron H; Uzan G
    Exp Hematol; 1997 Jun; 25(6):481-90. PubMed ID: 9197325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classes of primitive murine megakaryocytic progenitor cells.
    Jackson H; Williams N; Bertoncello I; Green R
    Exp Hematol; 1994 Sep; 22(10):954-8. PubMed ID: 8088378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cryopreservation on recovery of cells forming colonies in diffusion chambers in mice (CFUD).
    Niskanen EO; Wells JR; Quesenberry PJ; Cline MJ
    Exp Hematol; 1981 Apr; 9(4):411-4. PubMed ID: 7238655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Megakaryocytic and erythrocytic cell lines share a common precursor cell.
    McDonald TP; Sullivan PS
    Exp Hematol; 1993 Sep; 21(10):1316-20. PubMed ID: 8135919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of different temperature of cryopreservation on the proliferative potential of human bone marrow progenitor cells. Transplantological implications.
    Ratajczak MZ; Kuczyński WI; Ratajczak J
    Arch Immunol Ther Exp (Warsz); 1994; 42(3):217-21. PubMed ID: 7487356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cryopreservation protocol optimal for progenitor recovery is not optimal for preservation of marrow repopulating ability.
    Balint B; Ivanović Z; Petakov M; Taseski J; Jovcić G; Stojanović N; Milenković P
    Bone Marrow Transplant; 1999 Mar; 23(6):613-9. PubMed ID: 10217193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interleukin 3 directly stimulates both megakaryocyte progenitor cells and immature megakaryocytes.
    Kavnoudias H; Jackson H; Ettlinger K; Bertoncello I; McNiece I; Williams N
    Exp Hematol; 1992 Jan; 20(1):43-6. PubMed ID: 1577092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo assessment of the viability of cryopreserved postmortem murine bone marrow cells.
    Liu PI; Poon KC; Hong CC; Crook L; Liu SS; Eguchi M
    Ann Clin Lab Sci; 1980; 10(2):165-8. PubMed ID: 7387123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone marrow cryopreservation: improved recovery due to bioantioxidant additives in the freezing solution.
    Limaye LS
    Stem Cells; 1997; 15(5):353-8. PubMed ID: 9323797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relative population sizes of megakaryocytic cells in mouse bone marrow as determined by mpl ligand responsiveness.
    Mintern J; Williams N; Jackson H
    Exp Hematol; 1997 Nov; 25(12):1233-9. PubMed ID: 9357966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of pluripotent hemopoietic stem cells and clonable precursor cells of erythrocytes, granulocytes, macrophages and megakaryocytes from mouse bone marrow.
    Williams N; Jackson H; Meyers P
    Exp Hematol; 1979 Nov; 7(10):524-34. PubMed ID: 317649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.