These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 6507176)

  • 1. The usefulness of isolated renal cortical cells to study phosphate transport.
    Tessitore N; Sakhrani LM; Massry SG
    Adv Exp Med Biol; 1984; 178():73-6. PubMed ID: 6507176
    [No Abstract]   [Full Text] [Related]  

  • 2. Gluconeogenesis, cytosolic redox potential, and phosphate and fluid transport in the isolated rabbit proximal tubule.
    Yanagawa N; Nagami GT; Kurokawa K
    Adv Exp Med Biol; 1984; 178():59-68. PubMed ID: 6507174
    [No Abstract]   [Full Text] [Related]  

  • 3. Intracellular processes that affect renal phosphate transport.
    Dennis VW; Brazy PC
    Adv Exp Med Biol; 1984; 178():21-4. PubMed ID: 6507156
    [No Abstract]   [Full Text] [Related]  

  • 4. The inhibition of parathyroid-hormone actions on gluconeogenesis and phosphate transport by 3-mercaptopicolinate in rabbit renal proximal tubules.
    Yanagawa N; Jo OD
    Biochem J; 1986 Jan; 233(1):271-3. PubMed ID: 3954729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between rate of gluconeogenesis and content of nicotinamide adenine dinucleotide in renal cortex.
    Ou SY; Kempson SA; Dousa TP
    Life Sci; 1981 Sep; 29(12):1195-202. PubMed ID: 6117776
    [No Abstract]   [Full Text] [Related]  

  • 6. Biochemical studies of the control of renal tubular phosphate reabsorption.
    Grahn MF; Parveen R; Butterworth PJ
    Adv Exp Med Biol; 1984; 178():41-8. PubMed ID: 6507168
    [No Abstract]   [Full Text] [Related]  

  • 7. Glucose and alanine inhibition of phosphate transport in renal microvillus membrane vesicles.
    Barrett PQ; Aronson PS
    Am J Physiol; 1982 Feb; 242(2):F126-31. PubMed ID: 7065130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of 1,25-dihydroxyvitamin D3 on membrane transport and intermediary metabolism.
    Egel J; Pfanstiel J; Puschett JB
    Miner Electrolyte Metab; 1985; 11(1):62-8. PubMed ID: 3838359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction between gluconeogenic metabolism and accumulation of phosphate by chick kidney tubule cells.
    Grahn MF; Parveen R; Butterworth PJ
    Cell Biochem Funct; 1985 Jul; 3(3):193-8. PubMed ID: 3836021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regulation of the renal excretion of phosphates. Use of isolated vesicles of luminal membranes for the study of phosphate transport].
    Angielski S
    Postepy Biochem; 1984; 30(3-4):273-94. PubMed ID: 6443024
    [No Abstract]   [Full Text] [Related]  

  • 11. Specific inhibition of rat renal Na+/phosphate cotransport by picolinamide.
    Campbell PI; al-Mahrouq HA; Abraham MI; Kempson SA
    J Pharmacol Exp Ther; 1989 Oct; 251(1):188-92. PubMed ID: 2529366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaline phosphatase activity does not mediate phosphate transport in the renal-cortical brush-border membrane.
    Tenenhouse HS; Scriver CR; Vizel EJ
    Biochem J; 1980 Aug; 190(2):473-6. PubMed ID: 7470062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observations on ouabain binding and membrane phosphorylation by the sodium pump.
    Whittam R; Hallam C; Wattam DG
    Proc R Soc Lond B Biol Sci; 1976 May; 193(1112):217-34. PubMed ID: 6964
    [No Abstract]   [Full Text] [Related]  

  • 14. Phosphate transport in the rabbit cortical collecting tubule.
    Agus ZS; Shareghi GR
    Adv Exp Med Biol; 1980; 128():125-7. PubMed ID: 7424668
    [No Abstract]   [Full Text] [Related]  

  • 15. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles.
    Kinsella JL; Aronson PS
    Am J Physiol; 1980 Jun; 238(6):F461-9. PubMed ID: 7386626
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of parathyroid hormone (PTH) and dietary phosphate on the sodium-dependent phosphate transport system located in the rat renal brush border membrane.
    Murer H; Evers C; Stoll R; Kinne R
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():455-62. PubMed ID: 211000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of substrates and nucleotides in phosphate uptake by rabbit renal cortical cells.
    Sakhrani LM; Tessitore N; Massry SG
    Miner Electrolyte Metab; 1984; 10(6):391-7. PubMed ID: 6503893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+-gradient-dependent stimulation of renal transport of rho-aminohippurate.
    Sheikh MI; Møller JV
    Biochem J; 1982 Oct; 208(1):243-6. PubMed ID: 7159395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of solute transport and enzyme activities in hog renal brush border membrane vesicles.
    De Smedt H; Kinne R
    Biochim Biophys Acta; 1981 Nov; 648(2):247-53. PubMed ID: 7306539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulation of glucose and pyruvate formation from glutamine and citric-acid-cycle intermediates in the kidney cortex of rats, dogs, rabbits and guinea pigs.
    Watford M; Vinay P; Lemieux G; Gougoux A
    Biochem J; 1980 Jun; 188(3):741-8. PubMed ID: 7470031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.