These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 6507898)
1. The effects of simulated increases in body weight for 60 days on robusticity and mineral content of limb bones of hypophysectomized rats. Simon MR; Holmes KR; Olsen AM Anat Rec; 1984 Oct; 210(2):333-41. PubMed ID: 6507898 [TBL] [Abstract][Full Text] [Related]
2. The effects of simulated increases in body weight for 30 and 60 days on bone robusticity of limb bones in rats. Simon MR; Holmes KR; Olsen AM Anat Rec; 1984 Oct; 210(2):327-31. PubMed ID: 6507897 [TBL] [Abstract][Full Text] [Related]
3. The effects of simulated increases in body weight from birth on bone robusticity of limb bones of rats. Simon MR; Holmes KR; Olsen AM Anat Rec; 1984 Oct; 210(2):343-6. PubMed ID: 6507899 [TBL] [Abstract][Full Text] [Related]
4. Bone mineral content of limb bones of male weanling rats subjected to 30 and 60 days of simulated increases in body weight. Simon MR; Holmes KR; Olsen AM Acta Anat (Basel); 1985; 121(1):7-11. PubMed ID: 3969826 [TBL] [Abstract][Full Text] [Related]
5. Effects of simulated increases in body weight on the growth of limb bones in hypophysectomized rats. Simon MR; Holmes KR; Olsen AM Acta Anat (Basel); 1985; 121(1):1-6. PubMed ID: 3969817 [TBL] [Abstract][Full Text] [Related]
6. The effects of quantified amounts of increased intermittent compressive forces for 30 and 60 days on the growth of limb bones in the rat. Simon MR; Holmes KR; Olsen AM Acta Anat (Basel); 1984; 120(4):173-9. PubMed ID: 6516777 [TBL] [Abstract][Full Text] [Related]
7. Effects of simulated increases in body weight from birth on the growth of limb bones in rats. Simon MR; Holmes KR; Olsen AM Acta Anat (Basel); 1985; 121(1):12-6. PubMed ID: 3969818 [TBL] [Abstract][Full Text] [Related]
8. In vivo whole body and appendicular bone mineral density in rats: a dual energy X-ray absorptiometry study. Karahan S; Kincaid SA; Lauten SD; Wright JC Comp Med; 2002 Apr; 52(2):143-51. PubMed ID: 12022394 [TBL] [Abstract][Full Text] [Related]
9. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Ward KA; Roberts SA; Adams JE; Mughal MZ Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561 [TBL] [Abstract][Full Text] [Related]
10. [A study on the relationship between bone mineral content and the tissue calcium level in rats]. Zhao X; Yin S; Xu Q; Hu S Wei Sheng Yan Jiu; 1997 Mar; 26(2):102-5. PubMed ID: 10325612 [TBL] [Abstract][Full Text] [Related]
11. Bone mineral content and density in the humerus of adult myostatin-deficient mice. Hamrick MW; McPherron AC; Lovejoy CO Calcif Tissue Int; 2002 Jul; 71(1):63-8. PubMed ID: 12060865 [TBL] [Abstract][Full Text] [Related]
12. Relations of bone mineral content, ash weight and bone mass: implication for correction of bone mineral content for bone size. Nielsen HE; Mosekilde L; Mosekilde L; Melsen B; Christensen P; Olsen KJ; Melsen F Clin Orthop Relat Res; 1980; (153):241-7. PubMed ID: 7449223 [TBL] [Abstract][Full Text] [Related]
13. Bone changes during simulated weightlessness in rats. Jain PK; Iyer EM; Banerjee PK; Baboo NS Indian J Physiol Pharmacol; 2000 Jul; 44(3):359-62. PubMed ID: 10941628 [TBL] [Abstract][Full Text] [Related]
14. Inulin and fructo-oligosaccharides differ in their ability to enhance the density of cancellous and cortical bone in the axial and peripheral skeleton of growing rats. Nzeusseu A; Dienst D; Haufroid V; Depresseux G; Devogelaer JP; Manicourt DH Bone; 2006 Mar; 38(3):394-9. PubMed ID: 16249132 [TBL] [Abstract][Full Text] [Related]
15. Differences in bone mineral density, bone mineral content, and bone areal size in fracturing and non-fracturing women, and their interrelationships at the spine and hip. Deng HW; Xu FH; Davies KM; Heaney R; Recker RR J Bone Miner Metab; 2002; 20(6):358-66. PubMed ID: 12434164 [TBL] [Abstract][Full Text] [Related]
16. Effects of dietary phytase on body weight gain, body composition and bone strength in growing rats fed a low-zinc diet. McClung JP; Stahl CH; Marchitelli LJ; Morales-Martinez N; Mackin KM; Young AJ; Scrimgeour AG J Nutr Biochem; 2006 Mar; 17(3):190-6. PubMed ID: 16214325 [TBL] [Abstract][Full Text] [Related]
17. Maternal low-protein diet affects bone mass and mineral metabolism in suckling rats. Fetoui H; Mahjoubi-Samet A; Guermazi F; Zeghal N J Anim Physiol Anim Nutr (Berl); 2008 Aug; 92(4):448-55. PubMed ID: 18662354 [TBL] [Abstract][Full Text] [Related]
18. Influence of maternal nicotine exposure on neonatal rat bone: protective effect of pentoxifylline. Kurtoglu S; Gunes T; Koklu E; Bastug O; Canoz O; Kula M; Bastug F; Gunes I Exp Biol Med (Maywood); 2007 Mar; 232(3):398-405. PubMed ID: 17327473 [TBL] [Abstract][Full Text] [Related]
19. Formation and resorption of bone induced by demineralized bone matrix implants in rats. Bauer FC; Nilsson OS; Törnkvist H Clin Orthop Relat Res; 1984 Dec; (191):139-43. PubMed ID: 6499305 [TBL] [Abstract][Full Text] [Related]
20. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength. Tsanzi E; Light HR; Tou JC Bone; 2008 May; 42(5):960-8. PubMed ID: 18328797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]