These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 6508236)

  • 1. [Glutathione and tissue uptake of triiodothyronine].
    Higueret P; Garcin H
    Ann Endocrinol (Paris); 1984; 45(2):149-50. PubMed ID: 6508236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of diamide on amino acid transport by rat renal cortex slices.
    Reynolds R; Rea C; McNamara PD; Segal S
    Biochim Biophys Acta; 1979 Nov; 557(2):449-59. PubMed ID: 497193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of diazene dicarboxylic acid bis-(N, N-dimethylamide) on glycine uptake by newborn renal cortex.
    Roth KS; Serabian MA; Rea C; Segal S
    Pediatr Pharmacol (New York); 1980; 1(2):161-9. PubMed ID: 7346738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione-dependent inactivation of sodium-dependent phosphate transport across rat renal brush-border membrane.
    Suzuki M; Iwamoto T; Kawaguchi Y; Iriyama K; Ogawa A; Miyahara T
    Pflugers Arch; 1989 Feb; 413(4):329-35. PubMed ID: 2928083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity of the beta-amino-preferring transport system in rat kidney cortex. Differential influence of glutathione oxidation.
    Chesney RW; Jax DK
    Biochim Biophys Acta; 1977 Apr; 466(1):84-96. PubMed ID: 851533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of beta-amino acid transport by diamide does not involve the brush border membrane surface.
    Chesney RW; Gusowski N; Albright P
    Pediatr Pharmacol (New York); 1985; 5(1):63-72. PubMed ID: 3991254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. alpha-Methyl-D-glucoside uptake in renal cortical slices of normal and alloxan diabetic rabbits.
    Fonteles MC; Pillion DJ; Leibach FH
    Arch Int Physiol Biochim; 1979 May; 87(2):245-52. PubMed ID: 92922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of diamide and glutathione on the uptake of alpha-methyl-D-glucoside by slices of rat kidney cortex.
    Pillion DJ; Leibach FH
    Biochim Biophys Acta; 1975 Mar; 382(2):246-52. PubMed ID: 1120158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of glutathione in renal cortical tissue. Effects of diamide on Na+ and GSSG levels, amino acid transport and Na+-K+-ATPase activity.
    Pillon DJ; Moree L; Rocha H; Pashley DH; Mendicino J; Leibach FH
    Mol Cell Biochem; 1977 Dec; 18(2-3):109-15. PubMed ID: 146823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observations on the factors that control the generation of triiodothyronine from thyroxine in rat liver and the nature of the defect induced by fasting.
    Balsam A; Ingbar SH
    J Clin Invest; 1979 Jun; 63(6):1145-56. PubMed ID: 36408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental and diamide-induced differences in rat renal cortical glutathione levels.
    Roth KS; Serabian MA; Rea C; Segal S
    Proc Soc Exp Biol Med; 1980 Jan; 163(1):91-4. PubMed ID: 7352150
    [No Abstract]   [Full Text] [Related]  

  • 12. Triiodothyronine and vitamin A-deficiency in the rat.
    Higueret P; Garcin H
    J Physiol (Paris); 1984; 79(5):373-7. PubMed ID: 6098643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione deficiency induced by cystine and/or methionine deprivation does not affect thyroid hormone deiodination in cultured rat hepatocytes and monkey hepatocarcinoma cells.
    Sato K; Robbins J
    Endocrinology; 1981 Sep; 109(3):844-52. PubMed ID: 6790265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cisplatin-induced injury to calcium uptake by mitochondria in glutathione-depleted slices of rat kidney cortex.
    Kameyama Y; Gemba M
    Jpn J Pharmacol; 1991 Jan; 55(1):174-6. PubMed ID: 2041224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of cysteine in the regulation of blood glutathione-protein mixed disulfides in rats treated with diamide.
    Di Simplicio P; Giannerini F; Giustarini D; Lusini L; Rossi R
    Toxicol Appl Pharmacol; 1998 Jan; 148(1):56-64. PubMed ID: 9465264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of glutathione oxidation on renal cortex taurine transport.
    Chesney RW; Jax DK
    Life Sci; 1979 Oct; 25(17):1497-1506. PubMed ID: 513967
    [No Abstract]   [Full Text] [Related]  

  • 17. Glutathione-dependent defence mechanisms in isolated round spermatids from the rat.
    Den Boer PJ; Poot M; Verkerk A; Jansen R; Mackenbach P; Grootegoed JA
    Int J Androl; 1990 Feb; 13(1):26-38. PubMed ID: 2312188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of the mitochondrial uptake of triiodothyronine (T3) in rat kidney on cytosolic T3-binding protein.
    Hashizume K; Kobayashi M; Miyamoto T; Yamauchi K
    Endocrinology; 1986 Sep; 119(3):1063-70. PubMed ID: 3015565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RT-PCR-based evidence for the in vivo stimulation of renal tubularp-aminohippurate (PAH) transport by triiodothyronine (T3) or dexamethasone (DEXA) in kidney tissue of immature and adult rats.
    Bahn A; Hauss A; Appenroth D; Ebbinghaus D; Hagos Y; Steinmetzer P; Burckhardt G; Fleck C
    Exp Toxicol Pathol; 2003 Jun; 54(5-6):367-73. PubMed ID: 12877347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain cortex reverse triiodothyronine (rT3) and triiodothyronine concentrations under steady state infusions of thyroxine and rT3.
    Goumaz MO; Kaiser CA; Burger AG
    Endocrinology; 1987 Apr; 120(4):1590-6. PubMed ID: 3830062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.