These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6508605)

  • 1. A new hollow-fiber oxygenator for clinical cardiopulmonary bypass.
    Golding LA; Loop FD; Meserko J; Sinkewich M; Nosé Y
    Artif Organs; 1984 Nov; 8(4):498-500. PubMed ID: 6508605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial clinical experience with a more efficient hollow fiber oxygenator of unique design.
    Karlson KE; Massimino R; Singh AK; Cooper GN; Moran JM
    J Cardiovasc Surg (Torino); 1987; 28(4):384-7. PubMed ID: 3597531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of hollow-fiber membrane surface area on oxygenator performance: Dideco D903 Avant versus a prototype with larger surface area.
    Mueller XM; Tevaearai HT; Jegger D; Boone Y; Augstburger M; von Segesser LK
    J Extra Corpor Technol; 2000 Sep; 32(3):152-7. PubMed ID: 11146960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of oxygen transfer in membrane oxygenators during clinical cardiopulmonary bypass.
    Clayton RH; Pearson DT; Murray A
    Clin Phys Physiol Meas; 1992 May; 13(2):167-77. PubMed ID: 1499260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial clinical experience with a low pressure drop membrane oxygenator for cardiopulmonary bypass in adult patients.
    Karlson KE; Massimino RM; Cooper GN; Singh AK
    Am J Surg; 1984 Apr; 147(4):447-50. PubMed ID: 6424487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method to measure oxygenator oxygen transfer performance during cardiopulmonary bypass: clinical testing using the Medtronic Fusion oxygenator.
    Hamilton C; Marin D; Weinbrenner F; Engelhardt B; Rosenzweig D; Beck U; Borisov P; Hohe S
    Perfusion; 2017 Mar; 32(2):133-140. PubMed ID: 27600701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison.
    Schuldes M; Riley JB; Francis SG; Clingan S
    J Extra Corpor Technol; 2016 Sep; 48(3):129-136. PubMed ID: 27729706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contemporary Oxygenator Design: Shear Stress-Related Oxygen and Carbon Dioxide Transfer.
    Hendrix RHJ; Ganushchak YM; Weerwind PW
    Artif Organs; 2018 Jun; 42(6):611-619. PubMed ID: 29473675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the oxygenator: past, present, and future.
    Iwahashi H; Yuri K; Nosé Y
    J Artif Organs; 2004; 7(3):111-20. PubMed ID: 15558331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evaluation of the Dideco D903 Avant 1.7 hollow-fibre membrane oxygenator.
    Mueller XM; Tevaearai HT; Augstburger M; Horisberger J; von Segesser LK
    Perfusion; 1998 Sep; 13(5):353-9. PubMed ID: 9778721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a preprimed microporous hollow-fiber membrane for rapid response neonatal extracorporeal membrane oxygenation.
    Walczak R; Lawson DS; Kaemmer D; McRobb C; McDermott P; Smigla G; Shearer I; Lodge A; Jaggers J
    Perfusion; 2005 Sep; 20(5):269-75. PubMed ID: 16231623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicone-coated polypropylene hollow-fiber oxygenator: experimental evaluation and preliminary clinical use.
    Shimono T; Shomura Y; Hioki I; Shimamoto A; Tenpaku H; Maze Y; Onoda K; Takao M; Shimpo H; Yada I
    Ann Thorac Surg; 1997 Jun; 63(6):1730-6. PubMed ID: 9205175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deleterious effects of cardiopulmonary bypass. A prospective study of bubble versus membrane oxygenation.
    van Oeveren W; Kazatchkine MD; Descamps-Latscha B; Maillet F; Fischer E; Carpentier A; Wildevuur CR
    J Thorac Cardiovasc Surg; 1985 Jun; 89(6):888-99. PubMed ID: 3158783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of a silicone coated hollow fiber oxygenator.
    Shimono T; Shomura Y; Tani K; Shimamoto A; Hioki I; Tokui T; Onoda K; Takao M; Shimpo H; Yada I
    ASAIO J; 1997; 43(5):M735-9. PubMed ID: 9360143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit.
    Wang S; Kunselman AR; Ündar A
    Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Studies on the development and clinical application of a silicone hollow-fiber membrane oxygenator].
    Ohmori K
    Nihon Kyobu Geka Gakkai Zasshi; 1984 Oct; 32(10):1783-94. PubMed ID: 6440928
    [No Abstract]   [Full Text] [Related]  

  • 17. The new advanced membrane gas exchanger.
    Berdajs DA; de Stefano E; Delay D; Ferrari E; Horisberger J; Ditmar Q; von Segesser LK
    Interact Cardiovasc Thorac Surg; 2011 Dec; 13(6):591-6. PubMed ID: 21835847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hematological effects of a new hollow fiber membrane oxygenator: a clinical study.
    Ennema JJ; Karliczek GF; Gerding A; Tigchelaar I; Dijck L; Harder MP; van der Heide JN; Wildevuur CR
    Thorac Cardiovasc Surg; 1984 Apr; 32(2):96-9. PubMed ID: 6204417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evaluation of the Medtronic Maxima Forté hollow fiber membrane oxygenator.
    Mueller XM; Tevaearai HT; Augstburger M; Horisberger J; von Segesser LK
    J Extra Corpor Technol; 1998 Sep; 30(3):115-9. PubMed ID: 10339286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfluorocarbon oxygen transport. A comparative study of four oxygenator designs.
    Ferguson ER; Clymer JJ; Spruell RD; Holman WL
    ASAIO J; 1994; 40(3):M649-53. PubMed ID: 8555594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.