BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 6508810)

  • 1. Thermodynamics of reverse electron transfer across site 1: ATP/2e- is greater than one.
    Freedman JA; Lemasters JJ
    Biochem Biophys Res Commun; 1984 Nov; 125(1):8-13. PubMed ID: 6508810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupler-inhibitor titrations of ATP-driven reverse electron transfer in isolated rat-liver mitochondria.
    Sánchez Olavarría J; Lambers A; van Dam K
    Biochim Biophys Acta; 1988 Oct; 936(1):108-13. PubMed ID: 2460134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles.
    Scholes TA; Hinkle PC
    Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetoacetate and malate effects on succinate and energy production by O2-deprived liver mitochondria supplied with 2-oxoglutarate.
    Guidoux R
    Arch Biochem Biophys; 1991 Jun; 287(2):397-402. PubMed ID: 1898011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of parathyroid hormone on the electron transport mediated reduction of acetoacetate by succinate in rat liver mitochondria.
    Martin DL; De Luca HF
    Arch Biochem Biophys; 1968 Aug; 126(2):558-63. PubMed ID: 5672515
    [No Abstract]   [Full Text] [Related]  

  • 6. Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio.
    Brown GC; Brand MD
    Biochem J; 1988 Jun; 252(2):473-9. PubMed ID: 2843170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ATP/2e-stoichiometry of 1 1/2 is thermodynamically possible for site 3 of oxidative phosphorylation.
    Lemasters JJ; Fleishman KE
    Biochem Biophys Res Commun; 1987 Jan; 142(1):176-82. PubMed ID: 3028400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes.
    Herweijer MA; Berden JA; Kemp A; Slater EC
    Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria.
    Alexandre A; Reynafarje B; Lehninger AL
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5296-300. PubMed ID: 31621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species produced by liver mitochondria of rats in sepsis.
    Taylor DE; Ghio AJ; Piantadosi CA
    Arch Biochem Biophys; 1995 Jan; 316(1):70-6. PubMed ID: 7840680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP and pH induced spectral changes of cytochrome b in rat liver mitochondria.
    Azzi A; Santato M
    Biochem Biophys Res Commun; 1971 Nov; 45(4):945-54. PubMed ID: 5117562
    [No Abstract]   [Full Text] [Related]  

  • 15. THe proton-per-electron stoicheiometry of 'site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5.
    de Jonge PC; Westerhoff HV
    Biochem J; 1982 May; 204(2):515-23. PubMed ID: 6288021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory action of oxaloacetate on succinate oxidation in rat-liver mitochondria and the mechanism of its reversal.
    Wojtczak AB
    Biochim Biophys Acta; 1969 Jan; 172(1):52-65. PubMed ID: 4387597
    [No Abstract]   [Full Text] [Related]  

  • 17. Thermodynamic limits to the ATP/site stoichiometries of oxidative phosphorylation by rat liver mitochondria.
    Lemasters JJ; Grunwald R; Emaus RK
    J Biol Chem; 1984 Mar; 259(5):3058-63. PubMed ID: 6321493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H+/site, charge/site, and ATP/site ratios in mitochondrial electron transport.
    Pozzan T; Di Virgilio F; Bragadin M; Miconi V; Azzone GF
    Proc Natl Acad Sci U S A; 1979 May; 76(5):2123-7. PubMed ID: 36612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton movements in energy-conserving membranes.
    Van Dam K; Wiechmann AH; Hellingwerf KJ
    Biochem Soc Trans; 1977; 5(2):485-7. PubMed ID: 20369
    [No Abstract]   [Full Text] [Related]  

  • 20. The redox state of the nicotinamide-adenine dinucleotides in rat liver homogenates.
    Krebs HA; Gascoyne T
    Biochem J; 1968 Jul; 108(4):513-20. PubMed ID: 4299127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.