BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 6508837)

  • 21. Similarities and differences in the glucuronidation of estradiol and estrone by UDP-glucuronosyltransferase in liver microsomes from male and female rats.
    Zhu BT; Suchar LA; Huang MT; Conney AH
    Biochem Pharmacol; 1996 May; 51(9):1195-202. PubMed ID: 8645343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the interaction between estrogen metabolites and taurocholate for uptake into isolated hepatocytes. Lack of correlation between cholestasis and inhibition of taurocholate uptake.
    Brock WJ; Durham S; Vore M
    J Steroid Biochem; 1984 May; 20(5):1181-5. PubMed ID: 6727367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catechol estrogen formation in liver microsomes from female ACI and Sprague-Dawley rats: comparison of 2- and 4-hydroxylation revisited.
    Mesia-Vela S; Sanchez RI; Li JJ; Li SA; Conney AH; Kauffman FC
    Carcinogenesis; 2002 Aug; 23(8):1369-72. PubMed ID: 12151356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence of 2-hydroxylation of estradiol-17 beta 17-glucuronide by male rat liver microsomes.
    Watanabe K; Yoshizawa I
    Steroids; 1983 Aug; 42(2):163-70. PubMed ID: 6673185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of estrone and estradiol with DNA and protein of liver and kidney in rat and hamster in vivo and in vitro.
    Caviezel M; Lutz WK; Minini U; Schlatter C
    Arch Toxicol; 1984 Jul; 55(2):97-103. PubMed ID: 6477128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A male specific hepatic estrogen binding protein: characteristics and binding properties.
    Rogerson BJ; Eagon PK
    Arch Biochem Biophys; 1986 Oct; 250(1):70-85. PubMed ID: 3767382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism of 2,6-dimethylnaphthalene by rat liver microsomes and effect of its administration on glutathione depletion in vivo.
    Shamsuddin ZA; Rahimtula AD
    Drug Metab Dispos; 1986; 14(6):724-32. PubMed ID: 2877834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microsomal hydroxylation of 2- and 4-fluoroestradiol to catechol metabolites and their conversion to methyl ethers: catechol estrogens as possible mediators of hormonal carcinogenesis.
    Ashburn SP; Han X; Liehr JG
    Mol Pharmacol; 1993 Apr; 43(4):534-41. PubMed ID: 8386306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of trichloroethylene in isolated hepatocytes, microsomes, and reconstituted enzyme systems containing cytochrome P-450.
    Miller RE; Guengerich FP
    Cancer Res; 1983 Mar; 43(3):1145-52. PubMed ID: 6825087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effect of Cu2+ and Zn2+ on the formation and further metabolism of catechol estrogen by rat liver microsomes.
    Jellinck PH; Newcombe AM
    J Steroid Biochem; 1988 Dec; 31(6):887-90. PubMed ID: 2848987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioactivation and irreversible binding of the cognition activator tacrine using human and rat liver microsomal preparations. Species difference.
    Woolf TF; Pool WF; Bjorge SM; Chang T; Goel OP; Purchase CF; Schroeder MC; Kunze KL; Trager WF
    Drug Metab Dispos; 1993; 21(5):874-82. PubMed ID: 7902251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [De-etherification of estradiol 3-propyl ether by subcellular fractions of rat liver].
    Tresca JP; Ponsard G; Degrelle H
    Can J Biochem; 1982 May; 60(5):549-55. PubMed ID: 7104832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of [4-14C]estrone in hamster and rat hepatic and renal microsomes: species-, sex- and age-specific differences.
    Haaf H; Metzler M; Li JJ
    J Steroid Biochem Mol Biol; 1992 May; 42(3-4):389-97. PubMed ID: 1606050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative microsomal metabolism of 1-nitropyrene and DNA-binding of oxidized metabolites following nitroreduction.
    Djurić Z; Fifer EK; Howard PC; Beland FA
    Carcinogenesis; 1986 Jul; 7(7):1073-9. PubMed ID: 3755082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Androgens inhibit the formation of catechol estrogens by estrogen 2-hydroxylase present in rat liver microsomal preparations.
    Brueggemeier RW; Bannan RA
    J Steroid Biochem; 1986 Sep; 25(3):351-4. PubMed ID: 3022073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hepatic estrone and estradiol glucuronyltransferase activity in pregnancy. Induction by pretreatment with 3-methylcholanthrene and phenobarbital.
    Vore M; Soliven E
    Drug Metab Dispos; 1979; 7(5):247-51. PubMed ID: 40760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes.
    Iverson SL; Shen L; Anlar N; Bolton JL
    Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NADPH-dependent metabolism of estrone by human liver microsomes.
    Lee AJ; Mills LH; Kosh JW; Conney AH; Zhu BT
    J Pharmacol Exp Ther; 2002 Mar; 300(3):838-49. PubMed ID: 11861789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of polybrominated biphenyls on hepatic microsomal metabolism of estrogens and uterotropic action of administered estrogen in rats.
    Bonhaus DW; McCormack KM; Braselton WE; Hook JB
    J Toxicol Environ Health; 1981; 8(1-2):141-50. PubMed ID: 6276575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia implications for vascular dysfunction.
    Jobe SO; Tyler CT; Magness RR
    Hypertension; 2013 Feb; 61(2):480-7. PubMed ID: 23319542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.