BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 6509028)

  • 1. Kinetic mechanism in the direction of oxidative decarboxylation for NAD-malic enzyme from Ascaris suum.
    Park SH; Kiick DM; Harris BG; Cook PF
    Biochemistry; 1984 Nov; 23(23):5446-53. PubMed ID: 6509028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanism of NAD:malic enzyme from Ascaris suum in the direction of reductive carboxylation.
    Mallick S; Harris BG; Cook PF
    J Biol Chem; 1991 Feb; 266(5):2732-8. PubMed ID: 1993653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies.
    Kiick DM; Harris BG; Cook PF
    Biochemistry; 1986 Jan; 25(1):227-36. PubMed ID: 3513825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotope partitioning for NAD-malic enzyme from Ascaris suum confirms a steady-state random kinetic mechanism.
    Chen CY; Harris BG; Cook PF
    Biochemistry; 1988 Jan; 27(1):212-9. PubMed ID: 3280016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction reactions catalyzed by malic enzyme.
    Park SH; Harris BG; Cook PF
    Biochemistry; 1986 Jul; 25(13):3752-9. PubMed ID: 3741834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of dissociation constants for enzyme-reactant complexes for NAD-malic enzyme by modulation of the thiol inactivation rate.
    Kiick DM; Allen BL; Rao JG; Harris BG; Cook PF
    Biochemistry; 1984 Nov; 23(23):5454-9. PubMed ID: 6509029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism of the cytosolic malic enzyme from human breast cancer cell line.
    Chang GG; Huang TM; Wang JK; Lee HJ; Chou WY; Meng CL
    Arch Biochem Biophys; 1992 Aug; 296(2):468-73. PubMed ID: 1632639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascaris suum NAD-malic enzyme is activated by L-malate and fumarate binding to separate allosteric sites.
    Karsten WE; Pais JE; Rao GS; Harris BG; Cook PF
    Biochemistry; 2003 Aug; 42(32):9712-21. PubMed ID: 12911313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum.
    Karsten WE; Gavva SR; Park SH; Cook PF
    Biochemistry; 1995 Mar; 34(10):3253-60. PubMed ID: 7880820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD+-malic enzyme. Regulatory properties of the enzyme from Ascaris suum.
    Landsperger WJ; Harris BG
    J Biol Chem; 1976 Jun; 251(12):3599-602. PubMed ID: 180002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinction between NAD- and NADH-binding forms of mitochondrial malate dehydrogenase as shown by inhibition with thenoyltrifuoroacetone.
    Gutman M; Hartstein E
    Biochim Biophys Acta; 1977 Mar; 481(1):33-41. PubMed ID: 191083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diethylpyrocarbonate inactivation of NAD-malic enzyme from Ascaris suum.
    Rao JG; Harris BG; Cook PF
    Arch Biochem Biophys; 1985 Aug; 241(1):67-74. PubMed ID: 4026323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate activation by malate induced by oxalate in the Ascaris suum NAD-malic enzyme reaction.
    Park SH; Harris BG; Cook PF
    Biochemistry; 1989 Jul; 28(15):6334-40. PubMed ID: 2790001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple roles of arginine 181 in binding and catalysis in the NAD-malic enzyme from Ascaris suum.
    Karsten WE; Cook PF
    Biochemistry; 2007 Dec; 46(50):14578-88. PubMed ID: 18027982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of activation of the NAD-malic enzyme from Ascaris suum by fumarate.
    Lai CJ; Harris BG; Cook PF
    Arch Biochem Biophys; 1992 Dec; 299(2):214-9. PubMed ID: 1444459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of an arginine residue essential for the activity of NAD-malic enzyme from Ascaris suum.
    Rao GS; Kong CT; Benjamin RC; Harris BG; Cook PF
    Arch Biochem Biophys; 1987 May; 255(1):8-13. PubMed ID: 3592670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of a thiol at the active site of the Ascaris suum NAD-malic enzyme results in changes in the rate-determining steps for oxidative decarboxylation of L-malate.
    Gavva SR; Harris BG; Weiss PM; Cook PF
    Biochemistry; 1991 Jun; 30(23):5764-9. PubMed ID: 2043616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tartrate dehydrogenase catalyzes the stepwise oxidative decarboxylation of D-malate with both NAD and thio-NAD.
    Karsten WE; Tipton PA; Cook PF
    Biochemistry; 2002 Oct; 41(40):12193-9. PubMed ID: 12356321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction.
    Weiss PM; Gavva SR; Harris BG; Urbauer JL; Cleland WW; Cook PF
    Biochemistry; 1991 Jun; 30(23):5755-63. PubMed ID: 2043615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The purification and steady-state kinetic behaviour of rabbit heart mitochondrial NAD(P)+ malic enzyme.
    Davisson VJ; Schulz AR
    Biochem J; 1985 Jan; 225(2):335-42. PubMed ID: 3977837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.