These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 6509089)
1. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies. Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089 [TBL] [Abstract][Full Text] [Related]
2. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid. Shoubridge EA; Jeffry FM; Keogh JM; Radda GK; Seymour AM Biochim Biophys Acta; 1985 Oct; 847(1):25-32. PubMed ID: 4052460 [TBL] [Abstract][Full Text] [Related]
3. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323 [TBL] [Abstract][Full Text] [Related]
4. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy. Williams JP; Headrick JP Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892 [TBL] [Abstract][Full Text] [Related]
5. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR. Yoshizaki K; Watari H; Radda GK Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769 [TBL] [Abstract][Full Text] [Related]
6. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Matthews PM; Bland JL; Gadian DG; Radda GK Biochim Biophys Acta; 1982 Nov; 721(3):312-20. PubMed ID: 7171631 [TBL] [Abstract][Full Text] [Related]
7. Determination of free creatine and phosphocreatine concentrations in the isolated perfused rat heart by 1H- and 31P-NMR. Unitt JF; Schrader J; Brunotte F; Radda GK; Seymour AM Biochim Biophys Acta; 1992 Jan; 1133(2):115-20. PubMed ID: 1731953 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study. Degani H; Laughlin M; Campbell S; Shulman RG Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712 [TBL] [Abstract][Full Text] [Related]
9. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery. Schaefer S; Carr LJ; Kreutzer U; Jue T Cardiovasc Res; 1993 Nov; 27(11):2044-51. PubMed ID: 8287416 [TBL] [Abstract][Full Text] [Related]
10. The energetics of myocardial stretch. Creatine kinase flux and oxygen consumption in the noncontracting rat heart. Bittl JA; Ingwall JS Circ Res; 1986 Mar; 58(3):378-83. PubMed ID: 3013457 [TBL] [Abstract][Full Text] [Related]
11. Advantages of perfluorochemical perfusion in the isolated working rabbit heart preparation using 31P-NMR. Freeman D; Mayr H; Schmidt P; Roberts JD; Bing RJ Biochim Biophys Acta; 1987 Mar; 927(3):350-8. PubMed ID: 3814627 [TBL] [Abstract][Full Text] [Related]
12. Creatine kinase kinetics in diabetic cardiomyopathy. Matsumoto Y; Kaneko M; Kobayashi A; Fujise Y; Yamazaki N Am J Physiol; 1995 Jun; 268(6 Pt 1):E1070-6. PubMed ID: 7611380 [TBL] [Abstract][Full Text] [Related]
13. pH and temperature effects on kinetics of creatine kinase in aqueous solution and in isovolumic perfused heart. A 31P nuclear magnetization transfer study. Goudemant JF; vander Elst L; Dupont B; Van Haverbeke Y; Muller RN NMR Biomed; 1994 May; 7(3):101-10. PubMed ID: 8080711 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart. Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786 [TBL] [Abstract][Full Text] [Related]
15. The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance. Gadian DG; Radda GK; Brown TR; Chance EM; Dawson MJ; Wilkie DR Biochem J; 1981 Jan; 194(1):215-28. PubMed ID: 6975619 [TBL] [Abstract][Full Text] [Related]
16. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure. Nascimben L; Friedrich J; Liao R; Pauletto P; Pessina AC; Ingwall JS Circulation; 1995 Mar; 91(6):1824-33. PubMed ID: 7882493 [TBL] [Abstract][Full Text] [Related]
17. Correlations between cardiac protein synthesis rates, intracellular pH and the concentrations of creatine metabolites. Sugden PH; Fuller SJ Biochem J; 1991 Jan; 273(Pt 2)(Pt 2):339-46. PubMed ID: 1991035 [TBL] [Abstract][Full Text] [Related]
18. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart. Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466 [TBL] [Abstract][Full Text] [Related]
19. Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer. Corbett RJ; Laptook AR J Cereb Blood Flow Metab; 1994 Nov; 14(6):1070-7. PubMed ID: 7929650 [TBL] [Abstract][Full Text] [Related]
20. Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. Neubauer S; Hamman BL; Perry SB; Bittl JA; Ingwall JS Circ Res; 1988 Jul; 63(1):1-15. PubMed ID: 3383370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]