These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6509569)

  • 1. Further characterization of the effects of alpha-1-acid glycoprotein on the passage of human erythrocytes through micropores.
    Maeda H; Morinaga T; Mori I; Nishi K
    Cell Struct Funct; 1984 Sep; 9(3):279-90. PubMed ID: 6509569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of alpha 1-acid glycoprotein on erythrocyte deformability and membrane stabilization.
    Matsumoto K; Nishi K; Tokutomi Y; Irie T; Suenaga A; Otagiri M
    Biol Pharm Bull; 2003 Jan; 26(1):123-6. PubMed ID: 12520190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheologic and pathophysiologic significance of red cell passage through narrow pores.
    Nakamura T; Hasegawa S; Shio H; Uyesaka N
    Blood Cells; 1994; 20(1):151-65; discussion 166-8. PubMed ID: 7994058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passage time measurement of individual red blood cells through arrayed micropores on Si3N4 membrane.
    Ogura E; Kusumoputro B; Moriizumi T
    J Biomed Eng; 1991 Nov; 13(6):503-6. PubMed ID: 1770812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of temperature and transfer from seawater to freshwater on blood microrheology in Pacific salmon.
    Kikuchi Y; Hughes GM; Koyama T; Kakiuchi Y; Araiso T
    Jpn J Physiol; 1985; 35(4):683-8. PubMed ID: 4068373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of human red blood cell deformability using a single micropore on a thin Si3N4 film.
    Ogura E; Abatti PJ; Moriizumi T
    IEEE Trans Biomed Eng; 1991 Aug; 38(8):721-6. PubMed ID: 1937504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red blood cell deformability and protein adsorption on red blood cell surface.
    Kikuchi Y; Koyama T
    Am J Physiol; 1984 Nov; 247(5 Pt 2):H739-47. PubMed ID: 6496755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffened erythrocytes augment the pulmonary hemodynamic response to hypoxia.
    Doyle MP; Walker BR
    J Appl Physiol (1985); 1990 Oct; 69(4):1270-5. PubMed ID: 2124584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Microfiltrometer (MicroFM): a new filtration device for the assessment of less deformable erythrocyte subpopulations.
    Amoussou-Guenou KM; Martinsen OG; Squitiero B; Rusch P; Healy JC
    Scand J Clin Lab Invest; 2004 Apr; 64(2):108-12. PubMed ID: 15115247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: factors related to cardiopulmonary bypass.
    Kameneva MV; Undar A; Antaki JF; Watach MJ; Calhoon JH; Borovetz HS
    ASAIO J; 1999; 45(4):307-10. PubMed ID: 10445736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human erythrocyte filterability at low driving pressure.
    Ginsbourg S; Levin S; Einav S; Korenstein R
    Clin Hemorheol Microcirc; 2009; 43(4):309-19. PubMed ID: 19996520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of membrane bending modulus of stiffness tuned human red blood cells from micropore filtration studies.
    Selvan R; Parthasarathi P; Iyengar SS; Ananthamurthy S; Bhattacharya S
    PLoS One; 2019; 14(12):e0226640. PubMed ID: 31891585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of normal human erythrocytes on blood rheology in microcirculation.
    Hirata C; Kobayashi H; Mizuno N; Kutsuna H; Ishina K; Ishii M
    Osaka City Med J; 2007 Dec; 53(2):73-85. PubMed ID: 18432063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutrophil retention in model capillaries: deformability, geometry, and hydrodynamic forces.
    Downey GP; Worthen GS
    J Appl Physiol (1985); 1988 Oct; 65(4):1861-71. PubMed ID: 3182546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane deformability of metabolically depleted human red cells.
    Baker RF
    Blood Cells; 1981; 7(3):551-60. PubMed ID: 7337835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between red blood cells and a lethal, partly quaternized tertiary polyamine.
    Moreau E; Ferrari I; Drochon A; Chapon P; Vert M; Domurado D
    J Control Release; 2000 Feb; 64(1-3):115-28. PubMed ID: 10640650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow behavior of neonatal and adult erythrocytes in narrow capillaries.
    Stadler A; Linderkamp O
    Microvasc Res; 1989 May; 37(3):267-79. PubMed ID: 2733599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale modeling of hemolysis during microfiltration.
    Nikfar M; Razizadeh M; Paul R; Liu Y
    Microfluid Nanofluidics; 2020 May; 24(5):. PubMed ID: 33235552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of varying external pneumatic pressure on hemolysis and red blood cell elongation index in fresh and aged blood: Randomized laboratory research.
    Choi YJ; Huh H; Bae GE; Ko EJ; Choi SU; Park SH; Lim CH; Shin HW; Lee HW; Yoon SZ
    Medicine (Baltimore); 2018 Jul; 97(28):e11460. PubMed ID: 29995802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations of red blood cell shape and sialic acid membrane content in septic patients.
    Piagnerelli M; Boudjeltia KZ; Brohee D; Piro P; Carlier E; Vincent JL; Lejeune P; Vanhaeverbeek M
    Crit Care Med; 2003 Aug; 31(8):2156-62. PubMed ID: 12973174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.