These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6510190)

  • 1. Optimization of polyacrylamide gel electrophoresis conditions used for sequencing mixed oligodeoxyribonucleotides.
    Landick R; Maguire D; Lutter LC
    DNA; 1984 Oct; 3(5):413-9. PubMed ID: 6510190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution polyacrylamide gel electrophoresis of oligonucleotides using L-histidine buffer.
    Mandecki W; Hayden M
    DNA; 1988; 7(1):57-62. PubMed ID: 3349905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and suppression of secondary structures formed from deoxy-oligonucleotides during electrophoresis in denaturing polyacrylamide-gels.
    Frank R; Müller D; Wolff C
    Nucleic Acids Res; 1981 Oct; 9(19):4967-79. PubMed ID: 7312623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA chain length markers and the influence of base composition on electrophoretic mobility of oligodeoxyribonucleotides in polyacrylamide-gels.
    Frank R; Köster H
    Nucleic Acids Res; 1979; 6(6):2069-87. PubMed ID: 461182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic oligodeoxyribonucleotides showing abnormal mobilities on polyacrylamide gel electrophoresis.
    Hirao I; Naraoka T; Kanamori S; Nakamura M; Miura K
    Biochem Int; 1988 Jan; 16(1):157-62. PubMed ID: 3355571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary gel electrophoresis of oligonucleotides: prediction of migration times using base-specific migration coefficients.
    Cordier Y; Roch O; Cordier P; Bischoff R
    J Chromatogr A; 1994 Oct; 680(2):479-89. PubMed ID: 7981829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalously slow electrophoretic mobilities of DNA restriction fragments in polyacrylamide gels are not eliminated by increasing the gel pore size.
    Stellwagen A; Stellwagen NC
    Biopolymers; 1990; 30(3-4):309-24. PubMed ID: 2177663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denaturing polyacrylamide gel electrophoresis.
    Albright LM; Slatko BE
    Curr Protoc Nucleic Acid Chem; 2001 May; Appendix 3():Appendix 3B. PubMed ID: 18428811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Denaturing gel electrophoresis for sequencing.
    Slatko BE; Albright LM
    Curr Protoc Mol Biol; 2001 May; Chapter 7():Unit7.6. PubMed ID: 18265270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gel electrophoresis of restriction fragments.
    Southern E
    Methods Enzymol; 1979; 68():152-76. PubMed ID: 232210
    [No Abstract]   [Full Text] [Related]  

  • 11. An efficient method for the sequence analysis of oligodeoxyribonucleotides.
    Banaszuk AM; Deugau KV; Sherwood J; Michalak M; Glick BR
    Anal Biochem; 1983 Feb; 128(2):281-6. PubMed ID: 6846805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apparent pore size of polyacrylamide gels: comparison of gels cast and run in Tris-acetate-EDTA and Tris-borate-EDTA buffers.
    Stellwagen NC
    Electrophoresis; 1998 Jul; 19(10):1542-7. PubMed ID: 9719523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models of protein modification in Tris-glycine and neutral pH Bis-Tris gels during electrophoresis: effect of gel pH.
    Hachmann JP; Amshey JW
    Anal Biochem; 2005 Jul; 342(2):237-45. PubMed ID: 15935323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of synthetic oligodeoxyribonucleotides by capillary gel electrophoresis and anion-exchange HPLC.
    Warren WJ; Vella G
    Biotechniques; 1993 Apr; 14(4):598-606. PubMed ID: 8476604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [DNA-like duplexes containing repetitive sequences. VII. Chemico-enzymatic synthesis of polymers with fragments of natural promotors].
    Koroleva ON; Drutsa VL; Dolinnaia NG; Tsytovich AV; Shabarova ZA
    Mol Biol (Mosk); 1984; 18(1):146-60. PubMed ID: 6708955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoretic conditions for high resolution citrus isozymes in polyacrylamide gel electrophoresis.
    King BJ; Lee LS; Rackemann RG; Scott PT
    Electrophoresis; 1995 Jan; 16(1):32-8. PubMed ID: 7737089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curved DNA molecules migrate anomalously slowly in polyacrylamide gels even at zero gel concentration.
    Stellwagen NC
    Electrophoresis; 2006 Mar; 27(5-6):1163-8. PubMed ID: 16440397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of the complementary strands of DNA fragments on polyacrylamide gels.
    Szalay AA; Grohmann K; Sinsheimer RL
    Nucleic Acids Res; 1977; 4(5):1569-78. PubMed ID: 331258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix effects suggest an important influence of DNA-polyacrylamide interactions on the electrophoretic mobility of DNA.
    Niederweis M; Lederer T; Hillen W
    J Biol Chem; 1994 Apr; 269(13):10156-62. PubMed ID: 8144517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.