BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 6510409)

  • 21. The use of the Xenopus oocyte as a model system to analyze the expression and function of eukaryotic heat shock proteins.
    Heikkila JJ; Kaldis A; Morrow G; Tanguay RM
    Biotechnol Adv; 2007; 25(4):385-95. PubMed ID: 17459646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of RNA polymerase II-dependent transcription in Xenopus extracts.
    Toyoda T; Wolffe AP
    Dev Biol; 1992 Sep; 153(1):150-7. PubMed ID: 1516744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular cloning of a steroid-regulated 108K heat shock protein gene from hen oviduct.
    Kleinsek DA; Beattie WG; Tsai MJ; O'Malley BW
    Nucleic Acids Res; 1986 Dec; 14(24):10053-69. PubMed ID: 3027654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcription of Drosophila small hsp-tk hybrid genes is induced by heat shock and by ecdysterone in transfected Drosophila cells.
    Morganelli CM; Berger EM; Pelham HR
    Proc Natl Acad Sci U S A; 1985 Sep; 82(17):5865-9. PubMed ID: 3929245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An oocyte-expressed alpha-tubulin gene in Xenopus laevis; sequences required for the initiation of transcription.
    Middleton KM; Morgan GT
    Nucleic Acids Res; 1989 Jul; 17(13):5041-55. PubMed ID: 2762119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcript levels and translational control of hsp70 synthesis in Xenopus oocytes.
    Horrell A; Shuttleworth J; Colman A
    Genes Dev; 1987 Jul; 1(5):433-44. PubMed ID: 3678830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the hsp70 multigene family of Caenorhabditis elegans.
    Heschl MF; Baillie DL
    DNA; 1989 May; 8(4):233-43. PubMed ID: 2766926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Granok H; Elgin SC
    Mol Cell Biol; 1993 May; 13(5):2802-14. PubMed ID: 8474442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1.
    Baler R; Dahl G; Voellmy R
    Mol Cell Biol; 1993 Apr; 13(4):2486-96. PubMed ID: 8455624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developing a Temperature-Inducible Transcriptional Rheostat in Neurospora crassa.
    Tabilo-Agurto C; Del Rio-Pinilla V; Eltit-Villarroel V; Goity A; Muñoz-Guzmán F; Larrondo LF
    mBio; 2023 Feb; 14(1):e0329122. PubMed ID: 36744948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleotide sequence and regulation of a human 90-kDa heat shock protein gene.
    Rebbe NF; Hickman WS; Ley TJ; Stafford DW; Hickman S
    J Biol Chem; 1989 Sep; 264(25):15006-11. PubMed ID: 2768249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of polymerase chain reaction to detect the expression of the Mr 70,000 heat shock genes in control or heat shock leukemic cells as correlated to their heat response.
    Mivechi NF; Rossi JJ
    Cancer Res; 1990 May; 50(10):2877-84. PubMed ID: 2334891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. (dA-dC)n.(dG-dT)n repeats mark the boundaries of a recent insertion event into a subgroup of Xenopus laevis hsp 30 gene promoters.
    Ali A; Krone PH; Heikkila JJ
    Genome; 1994 Jun; 37(3):512-5. PubMed ID: 8034183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleotide sequences responsible for the thermal inducibility of the Drosophila small heat-shock protein genes in monkey COS cells.
    Ayme A; Southgate R; Tissières A
    J Mol Biol; 1985 Apr; 182(4):469-75. PubMed ID: 2409289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Promoter sequences required for transcription of Xenopus laevis histone genes in injected frog oocyte nuclei.
    Heindl LM; Weil TS; Perry M
    Mol Cell Biol; 1988 Sep; 8(9):3676-82. PubMed ID: 3221862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat shock inducibility of an archaeal TATA-like promoter is controlled by adjacent sequence elements.
    Thompson DK; Daniels CJ
    Mol Microbiol; 1998 Feb; 27(3):541-51. PubMed ID: 9489666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of diadenosine tetraphosphate microinjection on heat shock protein synthesis in Xenopus laevis oocytes.
    Guedon G; Sovia D; Ebel JP; Befort N; Remy P
    EMBO J; 1985 Dec; 4(13B):3743-9. PubMed ID: 4092696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heat and sodium arsenite act synergistically on the induction of heat shock gene expression in Xenopus laevis A6 cells.
    Heikkila JJ; Darasch SP; Mosser DD; Bols NC
    Biochem Cell Biol; 1987 Apr; 65(4):310-6. PubMed ID: 3606855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro transcription of a human hsp 70 heat shock gene by extracts prepared from heat-shocked and non-heat-shocked human cells.
    Drabent B; Genthe A; Benecke BJ
    Nucleic Acids Res; 1986 Nov; 14(22):8933-48. PubMed ID: 3786141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning and analysis of a human 86-kDa heat-shock-protein-encoding gene.
    Walter T; Drabent B; Krebs H; Tomalak M; Heiss S; Benecke BJ
    Gene; 1989 Nov; 83(1):105-15. PubMed ID: 2591742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.