These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 6511527)

  • 1. Temporal response of murine bone marrow to local hyperthermia.
    Werts ED; Smith KM
    Int J Radiat Oncol Biol Phys; 1984 Dec; 10(12):2315-21. PubMed ID: 6511527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development and magnitude of thermotolerance during chronic hyperthermia in murine granulocyte-macrophage progenitors: II.
    Xiong QB; O'Hara MD; Pollard MD; Leeper DB
    Int J Hyperthermia; 1996; 12(1):77-86. PubMed ID: 8676010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal response and hyperthermic radiosensitization of scid mouse bone marrow CFU-C.
    O'Hara MD; Pollard MD; Wheatley G; Regine WF; Mohiuddin M; Leeper DB
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):905-10. PubMed ID: 7860404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of murine bone marrow granulocyte-macrophage colony-forming units to hyperthermia in situ.
    O'Hara MD; Rowley R; Arnold SB; Boyer JW; Leeper DB
    Radiat Res; 1990 May; 122(2):149-54. PubMed ID: 2336461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of thermotolerance in bone marrow CFU-S during chronic hyperthermia.
    O'Hara MD; Pollard MD; Xiong QB; Leeper DB
    Exp Hematol; 1991 Oct; 19(9):878-81. PubMed ID: 1893963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development and magnitude of thermotolerance during chronic hyperthermia in murine bone marrow granulocyte-macrophage progenitors: I.
    O'Hara MD; Boyer JW; Lin C; Leeper DB
    Int J Hyperthermia; 1996; 12(1):87-95. PubMed ID: 8676011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of irradiation on thermal sensitivity of bone marrow progenitors.
    Mivechi NF; Li GC
    Int J Hyperthermia; 1988; 4(5):537-46. PubMed ID: 3292668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic thermal response, thermotolerance development and stepdown heating in murine bone marrow progenitor cells.
    O'Hara MD; Xiong QB; Boyer JW; Leeper DB
    Int J Hyperthermia; 1992; 8(4):451-61. PubMed ID: 1402125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thermal response and development of thermotolerance of the bone marrow stromal progenitor CFU-F.
    O'Hara MD; Lin C; Leeper DB
    Exp Hematol; 1991 Dec; 19(11):1096-100. PubMed ID: 1752319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of limb restraint on the thermal response of bone marrow CFU-GM heated in situ.
    O'Hara MD; Arnold SB; Rowley R; Leeper DB
    Int J Hyperthermia; 1989; 5(5):589-601. PubMed ID: 2768894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemopoietic progenitor cells in the blood as indicators of the functional status of the bone marrow after total-body and partial-body irradiation: experiences from studies in dogs.
    Nothdurft W; Kreja L
    Stem Cells; 1998; 16 Suppl 1():97-111. PubMed ID: 11012152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative heat sensitivity of murine and human hemopoietic progenitors and clonogenic leukemia cells.
    Gidáli J; Fehér I; Kovács P
    Stem Cells; 1994 Sep; 12(5):533-8. PubMed ID: 7804126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of long-term storage at -90 degrees C of bone marrow and PBPC on cell recovery, viability, and clonogenic potential.
    Ayello J; Semidei-Pomales M; Preti R; Hesdorffer C; Reiss RF
    J Hematother; 1998 Aug; 7(4):385-90. PubMed ID: 9735870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal and malignant human myeloid progenitors differ in their sensitivity to hyperthermia.
    Murphy PB; Richman CM
    Exp Hematol; 1989 Dec; 17(11):1105-9. PubMed ID: 2583254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the Cdk-inhibitor roscovitine on mouse hematopoietic progenitors in vivo and in vitro.
    Song H; Vita M; Sallam H; Tehranchi R; Nilsson C; Sidén A; Hassan Z
    Cancer Chemother Pharmacol; 2007 Nov; 60(6):841-9. PubMed ID: 17318617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper(II)2(3,5-diisopropylsalicylate)4 stimulates hemopoiesis in normal and irradiated mice.
    Soderberg LS; Barnett JB; Baker ML; Chang LW; Salari H; Sorenson JR
    Exp Hematol; 1988 Aug; 16(7):577-80. PubMed ID: 3292276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rescue from lethal irradiation correlates with transplantation of 10-20 CFU-S-day 12.
    Pallavicini MG; Redfearn W; Necas E; Brecher G
    Blood Cells Mol Dis; 1997 Aug; 23(2):157-68. PubMed ID: 9236154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal response of murine pluripotent stem cells and myeloid and erythroid progenitor cells to low-dose glucan treatment.
    Patchen ML; MacVittie TJ
    Acta Haematol; 1983; 70(5):281-8. PubMed ID: 6414220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of hematopoiesis to cyclophosphamide follows highly specific patterns in bone marrow and spleen.
    Sefc L; Psenák O; Sýkora V; Sulc K; Necas E
    J Hematother Stem Cell Res; 2003 Feb; 12(1):47-61. PubMed ID: 12662436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hematopoietic stem cells survive circulation arrest and reconstitute hematopoiesis in myeloablated mice.
    Michalova J; Savvulidi F; Sefc L; Faltusova K; Forgacova K; Necas E
    Biol Blood Marrow Transplant; 2011 Sep; 17(9):1273-81. PubMed ID: 21767513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.