BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6512848)

  • 1. Rubidium uptake in single cells.
    Kirk RG; Andrews SB; Lee P
    J Membr Biol; 1984; 82(2):137-43. PubMed ID: 6512848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray microanalysis study of rubidium uptake in single erythroid cells.
    Kirk RG; Andrews SB; Lee P
    Prog Clin Biol Res; 1983; 126():133-9. PubMed ID: 6889385
    [No Abstract]   [Full Text] [Related]  

  • 3. Electron probe microanalysis of red blood cells. II. Cation changes during maturation.
    Kirk RG; Lee P; Tosteson DC
    Am J Physiol; 1978 Nov; 235(5):C251-5. PubMed ID: 727248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubidium uptake and accumulation in peripheral myelinated internodal axons and Schwann cells.
    Lehning EJ; Gaughan CL; Eichberg J; LoPachin RM
    J Neurochem; 1997 Sep; 69(3):968-77. PubMed ID: 9282918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The correlation of composition and morphology during the high to low potassium transition in single erythropoietic cells.
    Kirk RG; Andrews SB; Lee P
    J Membr Biol; 1983; 76(3):281-7. PubMed ID: 6571265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electrone probe microanalysis of rubidium retention in myocell of rat heart during acute ischemia].
    Pogorelov AG; Pogorelova VN; Pogorelova MA
    Biofizika; 2012; 57(5):827-31. PubMed ID: 23136775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anion transport during maturation of erythroblastic cells.
    Kirk RG; Lee P
    J Membr Biol; 1988; 101(2):173-8. PubMed ID: 3367365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell rubidium uptake: a method for studying functional heterogeneity in the nephron.
    Beck FX; Dörge A; Blümner E; Giebisch G; Thurau K
    Kidney Int; 1988 Mar; 33(3):642-51. PubMed ID: 3367555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of maturation of membrane transport function in red blood cells by X-ray microanalysis.
    Lee P; Kirk RG
    J Membr Biol; 1982; 67(2):103-11. PubMed ID: 7097757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An X-ray microanalysis study of Locusta Malpighian tubule cell function using rubidium.
    Pivovarova N; Marshall SL; Anstee JH; Bowler K
    Am J Physiol; 1994 May; 266(5 Pt 2):R1551-61. PubMed ID: 8203632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An X-ray microanalysis study of cation changes during development in erythropoietic cells.
    Kirk RG; Andrews SB; Lee P
    Scan Electron Microsc; 1983; (Pt 2):793-800. PubMed ID: 6635576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular flux of potassium and rubidium in amphibian oocytes.
    Cameron IL; Hunter KE
    Physiol Chem Phys Med NMR; 1985; 17(2):173-81. PubMed ID: 2417267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential uptake of rubidium from extracellular space by glial cells compared to neurons in leech ganglia.
    Saubermann AJ; Castiglia CM; Foster MC
    Brain Res; 1992 Apr; 577(1):64-72. PubMed ID: 1521148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcellular sodium transport and basolateral rubidium uptake in the isolated perfused cortical collecting duct.
    Flemmer A; Dörge A; Thurau K; Beck FX
    Pflugers Arch; 1993 Aug; 424(3-4):250-4. PubMed ID: 8414914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intranuclear and cytoplasmic hemoglobin in human erythroblasts during maturation. Electron microscopic immunocytochemistry.
    Mizushima W; Eguchi M
    Histochemistry; 1989; 91(5):365-71. PubMed ID: 2722570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal excretion of rubidium and potassium: an electron microprobe and clearance study.
    Beck FX; Dörge A; Giebisch G; Thurau K
    Kidney Int; 1988 Oct; 34(4):455-62. PubMed ID: 3199665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray microanalysis of Rb+ entry into cricket Malpighian tubule cells via putative K+ channels.
    Marshall AT; Clode PL
    J Exp Biol; 2009 Sep; 212(18):2977-82. PubMed ID: 19717680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-dependent decrease of the passive Rb+ and K+ permeability of the nerve cell membranes in rat brain cortex as revealed by in vivo measurement of the Rb+ discrimination ratio.
    Gyenes M; Lustyik G; Nagy V; Jeney F; Nagy I
    Arch Gerontol Geriatr; 1984 May; 3(1):11-31. PubMed ID: 6742945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous determination of potassium and rubidium content in yeast.
    Mulet JM; Serrano R
    Yeast; 2002 Nov; 19(15):1295-8. PubMed ID: 12402240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane ionic currents in Rhodobacter capsulatus. Evidence for electrophoretic transport of K+, Rb+ and NH4+.
    Golby P; Carver M; Jackson JB
    Eur J Biochem; 1990 Feb; 187(3):589-97. PubMed ID: 2406135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.