These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 6512857)

  • 1. Chordate muscle actins differ distinctly from invertebrate muscle actins. The evolution of the different vertebrate muscle actins.
    Vandekerckhove J; Weber K
    J Mol Biol; 1984 Nov; 179(3):391-413. PubMed ID: 6512857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of chordate actin genes: evidence from genomic organization and amino acid sequences.
    Kusakabe T; Araki I; Satoh N; Jeffery WR
    J Mol Evol; 1997 Mar; 44(3):289-98. PubMed ID: 9060395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the chordate muscle actin gene.
    Kovilur S; Jacobson JW; Beach RL; Jeffery WR; Tomlinson CR
    J Mol Evol; 1993 Apr; 36(4):361-8. PubMed ID: 8315656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deuterostomic actin genes and the definition of the chordates: cDNA cloning and gene organization for cephalochordates and hemichordates.
    Bovenschulte M; Weber K
    J Mol Evol; 1997 Dec; 45(6):653-60. PubMed ID: 9419242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. A protein-chemical analysis of muscle actin differentiation.
    Vandekerckhove J; Weber K
    Differentiation; 1979; 14(3):123-33. PubMed ID: 499690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect muscle actins differ distinctly from invertebrate and vertebrate cytoplasmic actins.
    Mounier N; Gouy M; Mouchiroud D; Prudhomme JC
    J Mol Evol; 1992 May; 34(5):406-15. PubMed ID: 1602494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental atlas of appendicularian Oikopleura dioica actins provides new insights into the evolution of the notochord and the cardio-paraxial muscle in chordates.
    Almazán A; Ferrández-Roldán A; Albalat R; Cañestro C
    Dev Biol; 2019 Apr; 448(2):260-270. PubMed ID: 30217598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascidian actin genes: developmental regulation of gene expression and molecular evolution.
    Kusakabe T
    Zoolog Sci; 1997 Oct; 14(5):707-18. PubMed ID: 9450384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene duplication events producing muscle (M) and brain (B) isoforms of cytoplasmic creatine kinase: cDNA and deduced amino acid sequences from two lower chordates.
    Graber NA; Ellington WR
    Mol Biol Evol; 2001 Jul; 18(7):1305-14. PubMed ID: 11420369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence and expression of amphioxus alkali myosin light chain (AmphiMLC-alk) throughout development: implications for vertebrate myogenesis.
    Holland LZ; Pace DA; Blink ML; Kene M; Holland ND
    Dev Biol; 1995 Oct; 171(2):665-76. PubMed ID: 7556945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the antigenic sites of actin: a comparative study of the immunogenic crossreactivity of invertebrate actins.
    De Couet HG
    J Muscle Res Cell Motil; 1983 Aug; 4(4):405-27. PubMed ID: 6195188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphioxus and tunicates as evolutionary model systems.
    Schubert M; Escriva H; Xavier-Neto J; Laudet V
    Trends Ecol Evol; 2006 May; 21(5):269-77. PubMed ID: 16697913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins.
    Vandekerckhove J; Weber K
    Proc Natl Acad Sci U S A; 1978 Mar; 75(3):1106-10. PubMed ID: 274701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin amino-acid sequences. Comparison of actins from calf thymus, bovine brain, and SV40-transformed mouse 3T3 cells with rabbit skeletal muscle actin.
    Vandekerckhove J; Weber K
    Eur J Biochem; 1978 Oct; 90(3):451-62. PubMed ID: 213279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic organization and evolution of actin genes in the amphioxus Branchiostoma belcheri and Branchiostoma floridae.
    Kusakabe R; Satoh N; Holland LZ; Kusakabe T
    Gene; 1999 Feb; 227(1):1-10. PubMed ID: 9931404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear hormone receptors in chordates.
    Bertrand S; Belgacem MR; Escriva H
    Mol Cell Endocrinol; 2011 Mar; 334(1-2):67-75. PubMed ID: 20620189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Nitrogenous extractive substances of invertebrate muscle tissue].
    Lebedev AV
    Zh Evol Biokhim Fiziol; 1974 May; 10(3):232-42. PubMed ID: 4151684
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparative study of invertebrate actins: antigenic cross-reactivity versus sequence variability.
    Hue HK; Benyamin Y; Roustan C
    J Muscle Res Cell Motil; 1989 Apr; 10(2):135-42. PubMed ID: 2474567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of cis-acting elements in 5' flanking regions of vertebrate actin genes.
    Liu T; Wu J; He F
    J Mol Evol; 2000 Jan; 50(1):22-30. PubMed ID: 10654256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gonadotropin-releasing hormone in invertebrates: structure, function, and evolution.
    Tsai PS
    Gen Comp Endocrinol; 2006 Aug; 148(1):48-53. PubMed ID: 16256989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.