These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6514111)

  • 1. Glial cell growth in culture: influence of living cell substrata.
    Sakellaridis N; Mangoura D; Vernadakis A
    Neurochem Res; 1984 Oct; 9(10):1477-91. PubMed ID: 6514111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in neuronal and glial cell phenotypic expression in neuron-glia cocultures: influence of glia-conditioned media and living glial cell substrata.
    Lee K; Kentroti S; Vernadakis A
    Brain Res Bull; 1992 Jun; 28(6):861-70. PubMed ID: 1353404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of neuron-conditioned medium and fetal calf serum content on glial growth in dissociated cultures.
    Sakellaridis N; Mangoura D; Vernadakis A
    Brain Res; 1986 Jun; 392(1-2):31-41. PubMed ID: 3708383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of culture substrata on the differentiation of advanced passage glial cells in cultures from aged mouse cerebral hemispheres.
    Kozlova M; Kentroti S; Vernadakis A
    Int J Dev Neurosci; 1993 Aug; 11(4):513-9. PubMed ID: 7901967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early and late passage C-6 glial cell growth: similarities with primary glial cells in culture.
    Mangoura D; Sakellaridis N; Jones J; Vernadakis A
    Neurochem Res; 1989 Oct; 14(10):941-7. PubMed ID: 2575233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial cells dissociated from newborn and aged mouse brain.
    Vernadakis A; Mangoura D; Sakellaridis N; Linderholm S
    J Neurosci Res; 1984; 11(3):253-62. PubMed ID: 6145804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunocytochemical and biochemical characterization of glial phenotypes in normal and immortalized cultures derived from 3-day-old chick embryo encephalon.
    Kentroti S; Vernadakis A
    Glia; 1996 Oct; 18(2):79-91. PubMed ID: 8913772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth patterns of glial cells dissociated from newborn and aged mouse brain with cell passage.
    Vernadakis A; Davies D; Sakellaridis N; Mangoura D
    J Neurosci Res; 1986; 15(1):79-85. PubMed ID: 2870196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro studies on the control of nerve fiber growth by the extracellular matrix of the nervous system.
    Carbonetto S; Cochard P
    J Physiol (Paris); 1987; 82(4):258-70. PubMed ID: 3332689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamine synthetase expression in rat oligodendrocytes in culture: regulation by hormones and growth factors.
    Fressinaud C; Weinrauder H; Delaunoy JP; Tholey G; Labourdette G; Sarliève LL
    J Cell Physiol; 1991 Dec; 149(3):459-68. PubMed ID: 1683875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CNS neuronal cell line-derived factors regulate gliogenesis in neonatal rat brain cultures.
    Bottenstein JE; Hunter SF; Seidel M
    J Neurosci Res; 1988 Jul; 20(3):291-303. PubMed ID: 2852260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of acidic and basic fibroblast growth factors (aFGF, bFGF) on glial precursor cell proliferation: age dependency and brain region specificity.
    Engele J; Bohn MC
    Dev Biol; 1992 Aug; 152(2):363-72. PubMed ID: 1379560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative biochemical, morphological, and immunocytochemical studies between C-6 glial cells of early and late passages and advanced passages of glial cells derived from aged mouse cerebral hemispheres.
    Lee K; Kentroti S; Billie H; Bruce C; Vernadakis A
    Glia; 1992; 6(4):245-57. PubMed ID: 1361180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular location of glutamine synthetase and lactate dehydrogenase in oligodendrocyte-enriched cultures from rat brain.
    Warringa RA; van Berlo MF; Klein W; Lopes-Cardozo M
    J Neurochem; 1988 May; 50(5):1461-8. PubMed ID: 2896229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning electron microscopic observations on the interaction between normal neuronal and tumour cells in monolayer culture.
    Wong YC; Garber BB
    Anat Anz; 1981; 150(1-2):119-36. PubMed ID: 7304994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gliogenesis in the embryonic avian optic tectum: neuronal-glial interactions influence astroglial phenotype maturation.
    Linser PJ; Perkins M
    Brain Res; 1987 Feb; 428(2):277-90. PubMed ID: 2881613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintenance of glial plasticity with aging in C-6 glial cells and normal astrocytes in culture: responsiveness to opioid peptides.
    Kozlova M; Kentroti S; Vernadakis A
    J Neurosci Res; 1993 Dec; 36(5):570-9. PubMed ID: 7908340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary glial cells and brain fibroblasts: interactions in culture.
    Estin C; Vernadakis A
    Brain Res Bull; 1986 May; 16(5):723-31. PubMed ID: 2874876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal neurite growth on astrocytes is not modified by extracellular matrix, anti-L1 antibody, or oligodendrocytes.
    Ard MD; Bunge MB; Wood PM; Schachner M; Bunge RP
    Glia; 1991; 4(1):70-82. PubMed ID: 1828788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glial differentiation in dissociated cell cultures of neonatal rat brain: noncoordinate and density-dependent regulation of oligodendroglial enzymes.
    Wernicke JF; Volpe JJ
    J Neurosci Res; 1986; 15(1):39-47. PubMed ID: 2870195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.