These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6514134)

  • 1. Interactions between hippocampal serotonin and the pituitary-adrenal axis in the septal driving of hippocampal theta-rhythm.
    Azmitia EC; McNaughton N; Tsaltas L; Fillenz M; Gray JA
    Neuroendocrinology; 1984 Nov; 39(5):471-5. PubMed ID: 6514134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Septal elicitation of hippocampal theta rhythm after localized de-afferentation of serotoninergic fibers.
    McNaughton N; Azmitia EC; Williams JH; Buchan A; Gray JA
    Brain Res; 1980 Nov; 200(2):259-69. PubMed ID: 7417815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Septal driving of hippocampal theta rhythm as a function of frequency in the infant male rat.
    Lanfumey L; Adrien J; Gray JA
    Exp Brain Res; 1982; 45(1-2):230-2. PubMed ID: 7056328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proactive behavioral effects of theta-blocking septal stimulation in the rat.
    Holt L; Gray JA
    Behav Neural Biol; 1983 Sep; 39(1):7-21. PubMed ID: 6661144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonergic modulation of septo-hippocampal and septo-mammillary theta activity during spatial learning, in the rat.
    Gutiérrez-Guzmán BE; Hernández-Pérez JJ; Olvera-Cortés ME
    Behav Brain Res; 2017 Feb; 319():73-86. PubMed ID: 27845230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the septo-hippocampal system and its noradrenergic afferents in behavioural responses to none-reward.
    Gray JA; Feldon J; Rawlins JN; Owen S; McNaughton N
    Ciba Found Symp; 1977; (58):275-307. PubMed ID: 32018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Septal driving of the hippocampal theta rhythm produces a long-term, proactive and non-associative increase in resistance to extinction.
    Holt L; Gray JA
    Q J Exp Psychol B; 1983 May; 35 (Pt 2)():97-118. PubMed ID: 6683421
    [No Abstract]   [Full Text] [Related]  

  • 8. The role of the hippocampal mineralocorticoid and glucocorticoid receptors in the hypothalamo-pituitary-adrenal axis of the aged Fisher rat.
    Morano MI; Vázquez DM; Akil H
    Mol Cell Neurosci; 1994 Oct; 5(5):400-12. PubMed ID: 7820364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hippocampal theta rhythm in behaving rats following ibotenic acid lesion of the septum.
    Leung LS; Martin LA; Stewart DJ
    Hippocampus; 1994 Apr; 4(2):136-47. PubMed ID: 7951688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of spontaneous and septally driven hippocampal theta field and theta-related cellular activity.
    Scarlett D; Dypvik AT; Bland BH
    Hippocampus; 2004; 14(1):99-106. PubMed ID: 15058487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decrease in both choline acetyltransferase activity and EEG patterns in the hippocampal formation of the rat following septal macroelectrode implantation.
    Monmaur P; Fage D; M'Harzi M; Delacour J; Scatton B
    Brain Res; 1984 Feb; 293(1):178-83. PubMed ID: 6704717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of adrenalectomy and corticosterone on homotypic collateral sprouting of serotonergic fibers in hippocampus.
    Zhou FC; Azmitia EC
    Neurosci Lett; 1985 Mar; 54(2-3):111-6. PubMed ID: 3991054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency modulation of neuronal theta-bursts in rabbit's septum by low-frequency repetitive stimulation of the afferent pathways.
    Brazhnik ES; Vinogradova OS; Karanov AM
    Neuroscience; 1985 Feb; 14(2):501-8. PubMed ID: 3873021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reset of feedback in the adrenocortical system: an apparent shift in sensitivity of adrenocorticotropin to inhibition by corticosterone between morning and evening.
    Akana SF; Cascio CS; Du JZ; Levin N; Dallman MF
    Endocrinology; 1986 Nov; 119(5):2325-32. PubMed ID: 3021439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Septal deafferentation produces continuous rhythmic slow activity (theta) in the rat hippocampus.
    Kvirkvelia L; Buzsáki G; Grastyán E
    Acta Physiol Hung; 1987; 70(1):127-31. PubMed ID: 3425327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-correlation analysis of septohippocampal neurons during theta-rhythm.
    Alonso A; Gaztelu JM; Buño W; García-Austt E
    Brain Res; 1987 Jun; 413(1):135-46. PubMed ID: 3594253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is a retrosplenial (cingulate) pathway involved in the mediation of high frequency hippocampal rhythmical slow activity (theta)?
    Destrade C; Ott T
    Brain Res; 1982 Dec; 252(1):29-37. PubMed ID: 6293657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proactive behavioral effects of theta-driving septal stimulation on conditioned suppression and punishment in the rat.
    Holt L; Gray JA
    Behav Neurosci; 1985 Feb; 99(1):60-74. PubMed ID: 4041234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of rhythmically bursting neurons in rat medial septum following selective lesion of septohippocampal cholinergic system.
    Apartis E; Poindessous-Jazat FR; Lamour YA; Bassant MH
    J Neurophysiol; 1998 Apr; 79(4):1633-42. PubMed ID: 9535934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The role of the septal and entorhinal inputs in generating hippocampal electrical activity in the wakefulness-sleep cycle of the cat].
    Nachkebiia NG; Nachkebiia AIa; Oniani LT
    Neirofiziologiia; 1987; 19(5):622-30. PubMed ID: 3447062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.