These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6514141)

  • 1. Inhibition and facilitation of motor responding of the mouse by actions of dopamine agonists in the forebrain.
    Bradbury AJ; Costall B; Naylor RJ
    Neuropharmacology; 1984 Sep; 23(9):1025-31. PubMed ID: 6514141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mesolimbic nucleus accumbens is critically involved with the mediation of the motor inhibitory and facilitatory effects of dopamine agonists on mouse spontaneous climbing behaviour.
    Costall B; Eniojukan JF; Naylor RJ
    Eur J Pharmacol; 1983 Dec; 96(3-4):201-10. PubMed ID: 6426976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of the mechanisms by which purported dopamine agonists reduce spontaneous locomotor activity of mice.
    Costall B; Lim SK; Naylor RJ
    Eur J Pharmacol; 1981 Jul; 73(2-3):175-88. PubMed ID: 6118281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction in motor responding of the mouse by actions of dopamine agonists in the midbrain.
    Bradbury AJ; Costall B; Naylor RJ
    Neuropharmacology; 1983 Oct; 22(10):1171-6. PubMed ID: 6646352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous climbing behaviour of mice, its measurement and dopaminergic involvement.
    Costall B; Eniojukan JF; Naylor RJ
    Eur J Pharmacol; 1982 Nov; 85(2):125-32. PubMed ID: 7151866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical correlates of motor changes caused by the manipulation of dopamine function in the substantia nigra of the mouse.
    Bradbury AJ; Costall B; Kelly ME; Naylor RJ; Smith JA
    Neuropharmacology; 1985 Dec; 24(12):1155-61. PubMed ID: 4094652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine agonist action in mesolimbic, cortical and extrapyramidal areas to modify spontaneous climbing behaviour of the mouse.
    Costall B; Eniojukan JF; Naylor RJ
    Psychopharmacology (Berl); 1985; 86(4):452-7. PubMed ID: 3929317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the abilities of typical neuroleptic agents and of thioridazine, clozapine, sulpiride and metoclopramide to antagonise the hyperactivity induced by dopamine applied intracerebrally to areas of the extrapyramidal and mesolimbic systems.
    Costall B; Naylor RJ
    Eur J Pharmacol; 1976 Nov; 40(1):9-19. PubMed ID: 791660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of dopamine agonist action to inhibit locomotor activity and to induce stereotyped behaviour in the mouse.
    Bradbury AJ; Cannon JG; Costall B; Naylor RJ
    Eur J Pharmacol; 1984 Oct; 105(1-2):33-47. PubMed ID: 6541588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A central site of dopamine agonist action to modify gastric secretion in the rat.
    Costall B; Naylor RJ; Tan CC
    Eur J Pharmacol; 1985 Oct; 117(1):61-9. PubMed ID: 2867911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mesolimbic system, denervation and the climbing response in the mouse.
    Costall B; Fortune DH; Naylor RJ; Nohria V
    Eur J Pharmacol; 1980 Aug; 66(2-3):207-15. PubMed ID: 6108225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sites and mechanisms of action of 2-di-n-propylamino-5, 6-dihydroxytetralin in the hypothalamus of the rat to modify gastric secretion.
    Costall B; Naylor RJ; Tan CC
    Neuropharmacology; 1986 Jul; 25(7):681-7. PubMed ID: 2875416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional topography of brain serotonergic pathways in the rat.
    Hillegaart V
    Acta Physiol Scand Suppl; 1991; 598():1-54. PubMed ID: 1832809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential activation by some 2-aminotetralin derivatives of the receptor mechanisms in the nucleus accumbens of rats which mediate hyperactivity and stereotyped biting.
    Costall B; Naylor RJ; Cannon JG; Lee T
    Eur J Pharmacol; 1977 Feb; 41(3):307-19. PubMed ID: 556988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The actions of (-)N-n-propylnorapomorphine and selective dopamine D1 and D2 receptor agonists to modify the release of [3H]dopamine from the rat nucleus accumbens.
    Barnes JM; Barnes NM; Costall B; Naylor RJ
    Neuropharmacology; 1990 Apr; 29(4):327-36. PubMed ID: 1971430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the preferred rotameric conformation for dopamine agonist action: an illusory quest.
    Costall B; Lim SK; Naylor RJ; Cannon JG
    J Pharm Pharmacol; 1982 Apr; 34(4):246-54. PubMed ID: 6124599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aporphines, 21. (1,2) Dopaminergic activity of aporphine and benzylisoquinoline derivatives. Synthesis of 8-hydroxyaporphines and 1-(hydroxybenzyl)-2-n-propyl-1,2,3,4-tetrahydroisoquinolines.
    Costall B; Naylor RJ
    J Med Chem; 1977 Feb; 20(2):190-6. PubMed ID: 556776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced dopamine receptor activation in accumbens and frontal cortex has opposite effects on medial forebrain bundle self-stimulation.
    Olds ME
    Neuroscience; 1990; 35(2):313-25. PubMed ID: 2199840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the 5-HT3 receptor antagonist, GR38032F, on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain.
    Costall B; Domeney AM; Naylor RJ; Tyers MB
    Br J Pharmacol; 1987 Dec; 92(4):881-94. PubMed ID: 2962686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo evidence for preferential role of dopamine D3 receptor in the presynaptic regulation of dopamine release but not synthesis.
    Gainetdinov RR; Sotnikova TD; Grekhova TV; Rayevsky KS
    Eur J Pharmacol; 1996 Jul; 308(3):261-9. PubMed ID: 8858296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.