These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6514718)

  • 1. The effects of naloxone on canine splanchnic arterial smooth muscle.
    Sasaki T; Kassell NF; Turner DM; Torner JC; Coester HC
    Proc Soc Exp Biol Med; 1984 Dec; 177(3):422-7. PubMed ID: 6514718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of naloxone on canine cerebral vascular smooth muscle.
    Sasaki T; Kassell NF; Turner DM; Maixner W; Torner JC; Coester HC
    J Cereb Blood Flow Metab; 1984 Jun; 4(2):166-72. PubMed ID: 6725428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the effect of naloxone on cerebral versus mesenteric arterial smooth muscle in feline and primate species.
    Sasaki T; Kassell NF; Turner DM; Coester HC
    Stroke; 1984; 15(6):1025-8. PubMed ID: 6506114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naloxone potentiates contractile responses to epinephrine in isolated canine arteries.
    Caffrey JL; Hathorne LF; Carter GC; Sinclair RJ
    Circ Shock; 1990 Jul; 31(3):317-32. PubMed ID: 1972664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric artery.
    Noguera I; Medina P; Segarra G; Martínez MC; Aldasoro M; Vila JM; Lluch S
    Br J Pharmacol; 1997 Oct; 122(3):431-8. PubMed ID: 9351498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological action of FPL 55712 on canine cerebral arterial segments.
    Sasaki T; Kassell NF; Turner DM; Comair YG; Yamashita M; Fujiwara S
    Acta Neurochir (Wien); 1985; 74(1-2):81-3. PubMed ID: 3856380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium pools in the contraction of arterial smooth muscle induced by several agonists.
    Fasciolo JC
    J Hypertens; 1984 Oct; 2(5):515-21. PubMed ID: 6530555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential responses of rat aorta and mesenteric artery to norepinephrine and serotonin in vitro.
    Adegunloye BI; Sofola OA
    Pharmacology; 1997 Jul; 55(1):25-31. PubMed ID: 9309798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular Ca(2+)-dependent potentiation by cocaine of serotonin- and norepinephrine-induced contractions in rat vascular smooth muscle.
    Watanabe C; Yamamoto H; Kobayashi S; Kanaide H
    Circ Res; 1993 Jun; 72(6):1191-201. PubMed ID: 8495549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of indapamide on contractile responses and 45Ca2+ movements in various isolated blood vessels.
    Del Rio M; Chulia T; Gonzalez P; Tejerina T
    Eur J Pharmacol; 1993 Nov; 250(1):133-9. PubMed ID: 8119310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular alkalinization augments alpha(1)-adrenoceptor-mediated vasoconstriction by promotion of Ca(2+) entry through the non-L-type Ca(2+) channels.
    Wakabayashi I; Masui H; Groschner K
    Eur J Pharmacol; 2001 Oct; 428(2):251-9. PubMed ID: 11675043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early effects of tetraethylammonium chloride on the contractile properties of isolated rabbit basilar arteries.
    Young AR; Säveland H; Pickard JD; Perry S; Brandt L; Ljunggren B
    J Cereb Blood Flow Metab; 1987 Apr; 7(2):237-47. PubMed ID: 2435745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries.
    Shirozu K; Akata T; Yoshino J; Setoguchi H; Morikawa K; Hoka S
    Anesth Analg; 2009 Feb; 108(2):496-507. PubMed ID: 19151278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement by vasopressin of adrenergic responses in human mesenteric arteries.
    Medina P; Noguera I; Aldasoro M; Vila JM; Flor B; Lluch S
    Am J Physiol; 1997 Mar; 272(3 Pt 2):H1087-93. PubMed ID: 9087579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological analysis of 5-HT-induced vasoconstriction in isolated, perfused dog skeletal muscle arteries.
    Sinanović O; Chiba S
    Eur J Pharmacol; 1987 Nov; 143(3):353-60. PubMed ID: 2891553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presence of vasoconstrictor 5HT1-like receptors revealed by precontraction of rabbit isolated mesenteric artery.
    Choppin A; O'Connor SE
    Br J Pharmacol; 1995 Jan; 114(2):309-14. PubMed ID: 7881730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular relaxation by ifenprodil in the isolated perfused rat mesenteric artery.
    Adeagbo AS
    J Cardiovasc Pharmacol; 1984; 6(6):1142-7. PubMed ID: 6084772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in pharmacological receptor activities of rabbit arteries by sulfhydryl reagents.
    Asano M; Hidaka H
    Jpn J Pharmacol; 1983 Feb; 33(1):227-40. PubMed ID: 6876518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contractile actions of endothelin-1 in isolated helical strips from rat pulmonary artery: potentiation of serotonin-induced contraction.
    Itoh H; Hiraoka N; Higuchi H; Ito M; Konishi T; Nakano T
    J Cardiovasc Pharmacol; 1992 Jul; 20(1):1-6. PubMed ID: 1383617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responsiveness of skeletal muscle branches of the dog femoral artery to alpha-adrenoceptor agonists before and after cold storage.
    Sinanović O; Chiba S
    Arch Int Pharmacodyn Ther; 1987 May; 287(1):146-57. PubMed ID: 2888440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.