These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6515149)

  • 41. Acute and chronic pulmonary pressor responses to hypoxia: the role of blunting in acclimatization.
    Ou LC; Sardella GL; Hill NS; Tenney SM
    Respir Physiol; 1986 Apr; 64(1):81-91. PubMed ID: 3704382
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synergistic effects of acute hypoxemia and hypercapnic acidosis in conscious dogs. Renal dysfunction and activation of the renin-angiotensin system.
    Rose CE; Kimmel DP; Godine RL; Kaiser DL; Carey RM
    Circ Res; 1983 Aug; 53(2):202-13. PubMed ID: 6411380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of 70% nitrous oxide administration on regional distribution of brain blood flow in unmedicated healthy swine.
    Manohar M
    J Cardiovasc Pharmacol; 1985; 7(3):463-8. PubMed ID: 2410675
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude.
    Møller K; Paulson OB; Hornbein TF; Colier WN; Paulson AS; Roach RC; Holm S; Knudsen GM
    J Cereb Blood Flow Metab; 2002 Jan; 22(1):118-26. PubMed ID: 11807401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Augmented hypoxic cerebral vasodilation in men during 5 days at 3,810 m altitude.
    Jensen JB; Sperling B; Severinghaus JW; Lassen NA
    J Appl Physiol (1985); 1996 Apr; 80(4):1214-8. PubMed ID: 8926248
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cerebral blood flow velocity responses to hypoxia in subjects who are susceptible to high-altitude pulmonary oedema.
    Berré J; Vachiéry JL; Moraine JJ; Naeije R
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):260-3. PubMed ID: 10483794
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of acute exposure to high altitude and hypoxemia on ventricular stimulation thresholds in pacemaker patients.
    Weilenmann D; Duru F; Schönbeck M; Schenk B; Zwicky P; Russi EW; Candinas R
    Pacing Clin Electrophysiol; 2000 Apr; 23(4 Pt 1):512-5. PubMed ID: 10793443
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonuniform brain blood flow response to hypoxia in unanesthetized cats.
    Neubauer JA; Edelman NH
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Dec; 57(6):1803-8. PubMed ID: 6439706
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acute hypoxia in a simulated high-altitude airdrop scenario due to oxygen system failure.
    Ottestad W; Hansen TA; Pradhan G; Stepanek J; Høiseth LØ; Kåsin JI
    J Appl Physiol (1985); 2017 Dec; 123(6):1443-1450. PubMed ID: 28839003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hypoxemia lowers cerebrovascular resistance without changing brain and blood [H+].
    Javaheri S
    J Appl Physiol (1985); 1986 Mar; 60(3):802-8. PubMed ID: 3957832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of combined hypoxemia and cephalic hypotension on fetal cerebral blood flow and metabolism.
    Hohimer AR; Chao CR; Bissonnette JM
    J Cereb Blood Flow Metab; 1991 Jan; 11(1):99-105. PubMed ID: 1984009
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cerebrovascular response to acute decreases in arterial PO2.
    Wagerle LC; Orr JA; Shirer HW; Kiorpes AL; Fraser DB; DeSoignie RC
    J Cereb Blood Flow Metab; 1983 Dec; 3(4):507-15. PubMed ID: 6630320
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of alcohol on acute ventilatory adaptation to mild hypoxia at moderate altitude.
    Roeggla G; Roeggla H; Roeggla M; Binder M; Laggner AN
    Ann Intern Med; 1995 Jun; 122(12):925-7. PubMed ID: 7755228
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chronic hypoxia increases arterial blood pressure and reduces adenosine and ATP induced vasodilatation in skeletal muscle in healthy humans.
    Calbet JA; Boushel R; Robach P; Hellsten Y; Saltin B; Lundby C
    Acta Physiol (Oxf); 2014 Aug; 211(4):574-84. PubMed ID: 24920313
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regional blood flow distribution during simulated high-altitude exposure.
    Vogel JA; Pulver RL; Burton TM
    Fed Proc; 1969; 28(3):1155-9. PubMed ID: 5783515
    [No Abstract]   [Full Text] [Related]  

  • 56. The effect of altitude-induced hypoxia on regional myocardial blood flow.
    Jones DP; Damiano R; Cox JL; Wolfe WG
    J Thorac Cardiovasc Surg; 1981 Aug; 82(2):216-20. PubMed ID: 6789010
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preservation of cerebral autoregulation in the unanesthetized hypoxemic newborn dog.
    Camp D; Kotagal UR; Kleinman LI
    Brain Res; 1982 Jun; 241(2):207-13. PubMed ID: 6809225
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New insights into ocular blood flow at very high altitudes.
    Bosch MM; Merz TM; Barthelmes D; Petrig BL; Truffer F; Bloch KE; Turk A; Maggiorini M; Hess T; Schoch OD; Hefti U; Sutter FK; Pichler J; Huber A; Landau K
    J Appl Physiol (1985); 2009 Feb; 106(2):454-60. PubMed ID: 19057000
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of five consecutive nocturnal hypoxic exposures on the cerebrovascular responses to acute hypoxia and hypercapnia in humans.
    Kolb JC; Ainslie PN; Ide K; Poulin MJ
    J Appl Physiol (1985); 2004 May; 96(5):1745-54. PubMed ID: 14729726
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-ventricle physiology reduces cerebral oxygen delivery in a piglet model.
    Ricci M; Lombardi P; Galindo A; Coscarella E; Vasquez A; Rosenkranz E
    Ann Thorac Surg; 2005 Aug; 80(2):686-93; discussion 694. PubMed ID: 16039229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.