These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 6516500)

  • 1. [Glow polymers--new materials for surface finishing of implants].
    Poll HU
    Z Exp Chir Transplant Kunstliche Organe; 1984; 17(6):305-15. PubMed ID: 6516500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Biocompatibility of implants with and without fluorohydrocarbon glow-discharge polymer coating. 2. Automated equidensitometric recording of tissue reactions].
    Knöfler W; Hess J; Schreiber H; Keller F; Wohlgemuth B
    Z Exp Chir Transplant Kunstliche Organe; 1984; 17(6):325-9. PubMed ID: 6516502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biocompatibility of implants with and without fluorohydrocarbon glow-discharge polymer coating. 1. Histologic and semiquantitative estimation of subcutaneous reactions in guinea pigs].
    Knöfler W; Wohlgemuth B; Schreiber H; Keller F; Hess J
    Z Exp Chir Transplant Kunstliche Organe; 1984; 17(6):316-24. PubMed ID: 6516501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Biocompatibility of implants with and without fluorohydrocarbon glow-discharge polymer coating. 3. Mathematical models of the subsiding processes of the tissue reaction].
    Keller F; Knöfler W; Schreiber H; Hess J; Wohlgemuth B
    Z Exp Chir Transplant Kunstliche Organe; 1984; 17(6):330-6. PubMed ID: 6516503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymers as surgical implants.
    Leininger RI
    CRC Crit Rev Bioeng; 1972 Oct; 1(3):333-81. PubMed ID: 4134724
    [No Abstract]   [Full Text] [Related]  

  • 6. The status of porous materials to obtain direct skeletal attachment by tissue ingrowth.
    Klawitter JJ; Weinstein AM
    Acta Orthop Belg; 1974; 40(5-6):755-65. PubMed ID: 4469737
    [No Abstract]   [Full Text] [Related]  

  • 7. Characterization of the surface properties of commercially available dental implants using scanning electron microscopy, focused ion beam, and high-resolution transmission electron microscopy.
    Jarmar T; Palmquist A; Brånemark R; Hermansson L; Engqvist H; Thomsen P
    Clin Implant Dent Relat Res; 2008 Mar; 10(1):11-22. PubMed ID: 18254738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm formation, bacterial adhesion and host response on polymeric implants--issues and prevention.
    Pavithra D; Doble M
    Biomed Mater; 2008 Sep; 3(3):034003. PubMed ID: 18689922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of surface topology on the osseointegration of implant materials in trabecular bone.
    Wong M; Eulenberger J; Schenk R; Hunziker E
    J Biomed Mater Res; 1995 Dec; 29(12):1567-75. PubMed ID: 8600147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The choice of alloplastic materials for oral implants: does it really matter?
    Glantz PO
    Int J Prosthodont; 1998; 11(5):402-7. PubMed ID: 9922732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface microstructural factors and the blood compatibility of a silicone rubber.
    Nyilas E; Kupski EL; Burnett P; Haag RM
    J Biomed Mater Res; 1970 Sep; 4(3):369-431. PubMed ID: 5469184
    [No Abstract]   [Full Text] [Related]  

  • 12. Surface modification and evaluation of some commonly used catheter materials. I. Surface properties.
    Triolo PM; Andrade JD
    J Biomed Mater Res; 1983 Jan; 17(1):129-47. PubMed ID: 6826570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxylapatite growth on single-crystal rutile substrates.
    Lindberg F; Heinrichs J; Ericson F; Thomsen P; Engqvist H
    Biomaterials; 2008 Aug; 29(23):3317-23. PubMed ID: 18474397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive porous titanium: an alternative to surgical implants.
    de Medeiros WS; de Oliveira MV; Pereira LC; de Andrade MC
    Artif Organs; 2008 Apr; 32(4):277-82. PubMed ID: 18370941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thromboresistance of glass after glow discharge treatment in argon.
    Baier RE; Depalma VA; Furuse A; Gott VL; Kammlott GW; Lucas T; Sawyer PN; Srinivasan S; Stanczewski B
    J Biomed Mater Res; 1975 Nov; 9(6):547-60. PubMed ID: 1237493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bone response of oxidized bioactive and non-bioactive titanium implants.
    Sul YT; Johansson C; Byon E; Albrektsson T
    Biomaterials; 2005 Nov; 26(33):6720-30. PubMed ID: 15975649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels.
    Wen X; Tresco PA
    Biomaterials; 2006 Jul; 27(20):3800-9. PubMed ID: 16564567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo induction of macrophage Ia antigen (MHC class II) expression by biomedical polymers in the cage implant system.
    Petillo O; Peluso G; Ambrosio L; Nicolais L; Kao WJ; Anderson JM
    J Biomed Mater Res; 1994 May; 28(5):635-46. PubMed ID: 8027104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of graft polymers for biomedical applications.
    Ratner BD
    J Biomed Mater Res; 1980 Sep; 14(5):665-87. PubMed ID: 7349672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leachable components in polymeric medical implants and disposables: a brief critical review.
    Bruck SD
    Med Prog Technol; 1990; 16(3):131-43. PubMed ID: 2146478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.