These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6516502)

  • 1. [Biocompatibility of implants with and without fluorohydrocarbon glow-discharge polymer coating. 2. Automated equidensitometric recording of tissue reactions].
    Knöfler W; Hess J; Schreiber H; Keller F; Wohlgemuth B
    Z Exp Chir Transplant Kunstliche Organe; 1984; 17(6):325-9. PubMed ID: 6516502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Biocompatibility of implants with and without fluorohydrocarbon glow-discharge polymer coating. 1. Histologic and semiquantitative estimation of subcutaneous reactions in guinea pigs].
    Knöfler W; Wohlgemuth B; Schreiber H; Keller F; Hess J
    Z Exp Chir Transplant Kunstliche Organe; 1984; 17(6):316-24. PubMed ID: 6516501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biocompatibility of implants with and without fluorohydrocarbon glow-discharge polymer coating. 3. Mathematical models of the subsiding processes of the tissue reaction].
    Keller F; Knöfler W; Schreiber H; Hess J; Wohlgemuth B
    Z Exp Chir Transplant Kunstliche Organe; 1984; 17(6):330-6. PubMed ID: 6516503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Glow polymers--new materials for surface finishing of implants].
    Poll HU
    Z Exp Chir Transplant Kunstliche Organe; 1984; 17(6):305-15. PubMed ID: 6516500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Biocompatibility of implants with and without fluorohydrocarbon glow polymer coating. 4. Recommendations for the histocompatibility (repair) index for the evaluation of various implant materials].
    Keller F; Knöfler W; Schreiber H
    Z Exp Chir Transplant Kunstliche Organe; 1985; 18(1):9-18. PubMed ID: 3887784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility testing of polymers: in vivo implantation studies.
    Gourlay SJ; Rice RM; Hegyeli AF; Wade CW; Dillon JG; Jaffe H; Kulkarni RK
    J Biomed Mater Res; 1978 Mar; 12(2):219-32. PubMed ID: 649628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Applications of porous polymeric materials and its biocompatibility].
    Gao C; Li A; Yi X; Feng L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Dec; 16(4):511-5. PubMed ID: 12552735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study on biocompatibility of skin reproductive membrane].
    Ning L; Xue M; Huang HN
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2000 Jan; 14(1):44-8. PubMed ID: 12024591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophilic polymers--biocompatibility testing in vitro.
    Kejlová K; Labský J; Jírová D; Bendová H
    Toxicol In Vitro; 2005 Oct; 19(7):957-62. PubMed ID: 16081240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics.
    George PM; Lyckman AW; LaVan DA; Hegde A; Leung Y; Avasare R; Testa C; Alexander PM; Langer R; Sur M
    Biomaterials; 2005 Jun; 26(17):3511-9. PubMed ID: 15621241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue biocompatibility of cellulose and its derivatives.
    Miyamoto T; Takahashi S; Ito H; Inagaki H; Noishiki Y
    J Biomed Mater Res; 1989 Jan; 23(1):125-33. PubMed ID: 2708402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of polymeric delivery systems for macromolecules.
    Langer R; Brem H; Tapper D
    J Biomed Mater Res; 1981 Mar; 15(2):267-77. PubMed ID: 7348718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of the cytotoxicity and histocompatibility of in situ forming lactic acid based orthopedic biomaterials.
    Burdick JA; Padera RF; Huang JV; Anseth KS
    J Biomed Mater Res; 2002; 63(5):484-91. PubMed ID: 12209891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility testing for medical implant materials: the activities of F04.16 on biocompatibility test methods.
    St John KR
    Stand News; 1994 Mar; 22(3):46-9. PubMed ID: 10172771
    [No Abstract]   [Full Text] [Related]  

  • 15. Cytological evaluation of the tissue-implant reaction associated with subcutaneous implantation of polymers coated with titaniumcarboxonitride in vivo.
    Lehle K; Lohn S; Reinerth GG; Schubert T; Preuner JG; Birnbaum DE
    Biomaterials; 2004 Nov; 25(24):5457-66. PubMed ID: 15142726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm formation, bacterial adhesion and host response on polymeric implants--issues and prevention.
    Pavithra D; Doble M
    Biomed Mater; 2008 Sep; 3(3):034003. PubMed ID: 18689922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft tissue response to microtextured silicone and poly-L-lactic acid implants: fibronectin pre-coating vs. radio-frequency glow discharge treatment.
    Parker JA; Walboomers XF; Von den HJ; Maltha JC; Jansen JA
    Biomaterials; 2002 Sep; 23(17):3545-53. PubMed ID: 12109678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed in vitro immune response to long-term intraperitoneal polymer implant in mice.
    Maurin N; Guernier C; Daty N
    J Biomed Mater Res; 1995 Dec; 29(12):1493-8. PubMed ID: 8600139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One year histopathological evaluation of fibrous tissue surrounding TCPL implants using adult rats as a model.
    Butler K; Benghuzzi H; Bajpai P; Puckett A; Tucci M; Cason Z; England B
    Biomed Sci Instrum; 1997; 33():233-9. PubMed ID: 9731364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.