These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6517925)

  • 1. Polyethylene glycol-modified catalase exhibits unexpectedly high activity in benzene.
    Takahashi K; Ajima A; Yoshimoto T; Inada Y
    Biochem Biophys Res Commun; 1984 Dec; 125(2):761-6. PubMed ID: 6517925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ester synthesis catalyzed by polyethylene glycol-modified lipase in benzene.
    Inada Y; Nishimura H; Takahashi K; Yoshimoto T; Saha AR; Saito Y
    Biochem Biophys Res Commun; 1984 Jul; 122(2):845-50. PubMed ID: 6431976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chemical modification to make horseradish peroxidase soluble and active in benzene.
    Takahashi K; Nishimura H; Yoshimoto T; Saito Y; Inada Y
    Biochem Biophys Res Commun; 1984 May; 121(1):261-5. PubMed ID: 6732806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chymotrypsin modified with polyethylene glycol catalyzes peptide synthesis reaction in benzene.
    Matsushima A; Okada M; Inada Y
    FEBS Lett; 1984 Dec; 178(2):275-7. PubMed ID: 6548976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic lipase active in organic solvents.
    Takahashi K; Tamaura Y; Kodera Y; Mihama T; Saito Y; Inada Y
    Biochem Biophys Res Commun; 1987 Jan; 142(2):291-6. PubMed ID: 3814136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ester synthesis at extraordinarily low temperature of -3 degrees C by modified lipase in benzene.
    Takahashi K; Yoshimoto T; Tamaura Y; Saito Y; Inada Y
    Biochem Int; 1985 Apr; 10(4):627-31. PubMed ID: 3927919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyethylene glycol derivative-modified cholesterol oxidase soluble and active in benzene.
    Yoshimoto T; Ritani A; Ohwada K; Takahashi K; Kodera Y; Matsushima A; Saito Y; Inada Y
    Biochem Biophys Res Commun; 1987 Oct; 148(2):876-82. PubMed ID: 3479986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethylene glycol-modified hemin having peroxidase activity in organic solvents.
    Takahashi K; Matsushima A; Saito Y; Inada Y
    Biochem Biophys Res Commun; 1986 Jul; 138(1):283-8. PubMed ID: 2874801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of polyethylene glycol-modified L-asparaginase from Escherichia coli and its application to therapy of leukemia.
    Yoshimoto T; Nishimura H; Saito Y; Sakurai K; Kamisaki Y; Wada H; Sako M; Tsujino G; Inada Y
    Jpn J Cancer Res; 1986 Dec; 77(12):1264-70. PubMed ID: 3102431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase.
    Abuchowski A; McCoy JR; Palczuk NC; van Es T; Davis FF
    J Biol Chem; 1977 Jun; 252(11):3582-6. PubMed ID: 16907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of covalent attachment of polyethylene glycol on some properties of rat liver soluble alanine aminotransferase.
    Patnaik SK
    Biochem Mol Biol Int; 1994 May; 33(1):81-9. PubMed ID: 8081215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective synthesis of 2,4-bis(O-methoxypolyethylene glycol)-6-chloro-s-triazine as a protein modifier.
    Ono K; Kai Y; Maeda H; Samizo F; Sakurai K; Nishimura H; Inada Y
    J Biomater Sci Polym Ed; 1991; 2(1):61-5. PubMed ID: 1863578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical modification of tryptophanase from E. coli with polyethylene glycol to reduce its immunoreactivity towards anti-tryptophanase antibodies.
    Yoshimoto T; Chao SG; Saito Y; Imamura I; Wada H; Inada Y
    Enzyme; 1986; 36(4):261-5. PubMed ID: 3552656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide synthesis catalyzed by polyethylene glycol-modified chymotrypsin in organic solvents.
    Gaertner HF; Puigserver AJ
    Proteins; 1988; 3(2):130-7. PubMed ID: 3399494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity and stability of catalase in nonionic micellar and reverse micellar systems.
    Gebicka L; Jurgas-Grudzinska M
    Z Naturforsch C J Biosci; 2004; 59(11-12):887-91. PubMed ID: 15666551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Peroxidase activity of catalase modified by progesterone].
    Artemchik VD; Matveentsev VD; Metelitsa DI
    Biokhimiia; 1986 Aug; 51(8):1355-61. PubMed ID: 3021241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sodium dodecyl fulfate on the dissociation of bovine liver catalase.
    Takeda A; Hachimori A; Murai M; Sato K; Samejima T
    J Biochem; 1975 Nov; 78(5):911-24. PubMed ID: 1240102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved modification of yeast uricase with polyethylene glycol, accompanied with nonimmunoreactivity towards anti-uricase serum and high enzymic activity.
    Nishimura H; Matsushima A; Inada Y
    Enzyme; 1981; 26(1):49-53. PubMed ID: 7194181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation of bovine liver catalase into subunits on acetylation.
    Furuta H; Hachimori A; Ota Y; Samejima T
    J Biochem; 1974 Sep; 76(3):481-91. PubMed ID: 4474164
    [No Abstract]   [Full Text] [Related]  

  • 20. Chemical modification of wheat β-amylase by trinitrobenzenesulfonic acid, methoxypolyethylene glycol, and glutaraldehyde to improve its thermal stability and activity.
    Daba T; Kojima K; Inouye K
    Enzyme Microb Technol; 2013 Dec; 53(6-7):420-6. PubMed ID: 24315646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.