These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6518031)

  • 1. Cardiac, thoracic, and abdominal pump mechanisms in cardiopulmonary resuscitation: studies in an electrical model of the circulation.
    Babbs CF; Weaver JC; Ralston SH; Geddes LA
    Am J Emerg Med; 1984 Jul; 2(4):299-308. PubMed ID: 6518031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamic mechanisms in CPR: a theoretical rationale for resuscitative thoracotomy in non-traumatic cardiac arrest.
    Babbs CF
    Resuscitation; 1987 Mar; 15(1):37-50. PubMed ID: 3035669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical advantages of abdominal counterpulsation in CPR as demonstrated in a simple electrical model of the circulation.
    Babbs CF; Ralston SH; Geddes LA
    Ann Emerg Med; 1984 Sep; 13(9 Pt 1):660-71. PubMed ID: 6465647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretically optimal duty cycles for chest and abdominal compression during external cardiopulmonary resuscitation.
    Babbs CF; Thelander K
    Acad Emerg Med; 1995 Aug; 2(8):698-707. PubMed ID: 7584748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative effectiveness of interposed abdominal compression CPR: sensitivity analysis and recommended compression rates.
    Babbs CF
    Resuscitation; 2005 Sep; 66(3):347-55. PubMed ID: 16039034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysics of cardiopulmonary resuscitation with periodic z-axis acceleration or abdominal compression at aortic resonant frequencies.
    Babbs CF
    Resuscitation; 2006 Jun; 69(3):455-69. PubMed ID: 16563598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous external counterpressure during closed-chest resuscitation: a critical appraisal of the military antishock trouser garment and abdominal binder.
    Niemann JT; Rosborough JP; Criley JM
    Circulation; 1986 Dec; 74(6 Pt 2):IV102-7. PubMed ID: 3536155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abdominal counter pressure in CPR: what about the lungs? An in silico study.
    Zhang Y; Karemaker JM
    Resuscitation; 2012 Oct; 83(10):1271-6. PubMed ID: 22394695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiopulmonary resuscitation with interposed abdominal compression.
    Babbs CF; Tacker WA
    Circulation; 1986 Dec; 74(6 Pt 2):IV37-41. PubMed ID: 3536164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of near-optimal waveforms for chest and abdominal compression and decompression in CPR using computer-simulated evolution.
    Babbs CF
    Resuscitation; 2006 Feb; 68(2):277-93. PubMed ID: 16388884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiopulmonary resuscitation with interposed abdominal compression in dogs.
    Ralston SH; Babbs CF; Niebauer MJ
    Anesth Analg; 1982 Aug; 61(8):645-51. PubMed ID: 7201267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Could we use abdominal compressions rather than chest compression in patients who arrest after cardiac surgery?
    Adam Z; Adam S; Khan P; Dunning J
    Interact Cardiovasc Thorac Surg; 2009 Jan; 8(1):148-51. PubMed ID: 18948306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation.
    Niemann JT; Rosborough JP; Kassabian L; Salami B
    Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple electrical model of the circulation to explore design parameters for a skeletal muscle ventricle.
    Voytik SL; Babbs CF; Badylak SF
    J Heart Transplant; 1990; 9(2):160-74. PubMed ID: 2319376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of vest cardiopulmonary resuscitation on cerebral and coronary perfusion in an infant porcine model.
    Shaffner DH; Schleien CL; Koehler RC; Eberle B; Traystman RJ
    Crit Care Med; 1994 Nov; 22(11):1817-26. PubMed ID: 7956287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest.
    Timerman S; Cardoso LF; Ramires JA; Halperin H
    Resuscitation; 2004 Jun; 61(3):273-80. PubMed ID: 15172705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifications of cardiopulmonary resuscitation based on the cough.
    Criley JM; Niemann JT; Rosborough JP; Hausknecht M
    Circulation; 1986 Dec; 74(6 Pt 2):IV42-50. PubMed ID: 3779932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal control applied to a thoraco-abdominal CPR model.
    Jung E; Lenhart S; Protopopescu V; Babbs C
    Math Med Biol; 2008 Jun; 25(2):157-70. PubMed ID: 18515260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation.
    Rubertsson S; Karlsten R
    Resuscitation; 2005 Jun; 65(3):357-63. PubMed ID: 15919574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation of cardiopulmonary resuscitation: computer analysis of a simple electrical model of the circulation.
    Meador SA
    Resuscitation; 1986 Apr; 13(3):145-57. PubMed ID: 3012730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.