These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 6518253)

  • 1. Effect of planar dielectric interfaces on fluorescence emission and detection. Evanescent excitation with high-aperture collection.
    Burghardt TP; Thompson NL
    Biophys J; 1984 Dec; 46(6):729-37. PubMed ID: 6518253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total internal reflection fluorescence. Measurement of spatial and orientational distributions of fluorophores near planar dielectric interfaces.
    Thompson NL; Burghardt TP
    Biophys Chem; 1986 Nov; 25(1):91-7. PubMed ID: 3814748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Order in supported phospholipid monolayers detected by the dichroism of fluorescence excited with polarized evanescent illumination.
    Thompson NL; McConnell HM; Burhardt TP
    Biophys J; 1984 Dec; 46(6):739-47. PubMed ID: 6518254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evanescent excitation microscopy. Its application to the study of single molecular process kinetics of actomyosin motor.
    Miyata H; Chaen S; Sugiura S; Sugi H
    Adv Exp Med Biol; 1998; 453():29-35; discussion 35-6. PubMed ID: 9889811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency.
    Hill SC; Saleheen HI; Barnes MD; Whitten WB; Ramsey JM
    Appl Opt; 1996 Nov; 35(31):6278-88. PubMed ID: 21127654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy.
    Florine-Casteel K
    Biophys J; 1990 Jun; 57(6):1199-215. PubMed ID: 2393705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion.
    Starr TE; Thompson NL
    Biophys J; 2001 Mar; 80(3):1575-84. PubMed ID: 11222318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence.
    Mattheyses AL; Axelrod D
    J Biomed Opt; 2006; 11(1):014006. PubMed ID: 16526883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evanescent interference patterns for fluorescence microscopy.
    Abney JR; Scalettar BA; Thompson NL
    Biophys J; 1992 Feb; 61(2):542-52. PubMed ID: 1547337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evanescent field shapes excitation profile under axial epi-illumination.
    Burghardt TP
    J Biomed Opt; 2012 Jun; 17(6):066021. PubMed ID: 22734777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collection of emission from an oscillating dipole inside a sphere: analytical integration over a circular aperture.
    Pendleton JD; Hill SC
    Appl Opt; 1997 Nov; 36(33):8729-37. PubMed ID: 18264422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy.
    Thompson NL; Burghardt TP; Axelrod D
    Biophys J; 1981 Mar; 33(3):435-54. PubMed ID: 7225515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study.
    Axelrod D
    J Microsc; 2012 Aug; 247(2):147-60. PubMed ID: 22612666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circular and near-circular polarization states of evanescent monochromatic light fields in total internal reflection.
    Azzam RM
    Appl Opt; 2011 Nov; 50(33):6272-6. PubMed ID: 22108887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observing secretory granules with a multiangle evanescent wave microscope.
    Rohrbach A
    Biophys J; 2000 May; 78(5):2641-54. PubMed ID: 10777760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens.
    Serov A; Rao R; Gösch M; Anhut T; Martin D; Brunner R; Rigler R; Lasser T
    Biosens Bioelectron; 2004 Oct; 20(3):431-5. PubMed ID: 15494221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single molecule fluorescence image patterns linked to dipole orientation and axial position: application to myosin cross-bridges in muscle fibers.
    Burghardt TP
    PLoS One; 2011 Feb; 6(2):e16772. PubMed ID: 21347442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triplet-state investigations of fluorescent dyes at dielectric interfaces using total internal reflection fluorescence correlation spectroscopy.
    Blom H; Chmyrov A; Hassler K; Davis LM; Widengren J
    J Phys Chem A; 2009 May; 113(19):5554-66. PubMed ID: 19374408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confocal total-internal-reflection fluorescence microscopy with a high-aperture parabolic mirror lens.
    Ruckstuhl T; Seeger S
    Appl Opt; 2003 Jun; 42(16):3277-83. PubMed ID: 12790480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TIRF microscopy evanescent field calibration using tilted fluorescent microtubules.
    Gell C; Berndt M; Enderlein J; Diez S
    J Microsc; 2009 Apr; 234(1):38-46. PubMed ID: 19335455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.