BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6518283)

  • 1. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading.
    Koeller W; Funke F; Hartmann F
    Biorheology; 1984; 21(5):675-86. PubMed ID: 6518283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs.
    Koeller W; Meier W; Hartmann F
    Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The deformation behavior of human lumbar intervertebral discs subjected to long term axial dynamic compressive forces (author's transl)].
    Köller W; Funke F; Hartmann F
    Z Orthop Ihre Grenzgeb; 1981 Apr; 119(2):206-16. PubMed ID: 7234089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading.
    Solomonow M; He Zhou B; Baratta RV; Lu Y; Zhu M; Harris M
    Clin Biomech (Bristol, Avon); 2000 Mar; 15(3):167-75. PubMed ID: 10656978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression.
    Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP
    J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of frozen storage on the creep behavior of human intervertebral discs.
    Dhillon N; Bass EC; Lotz JC
    Spine (Phila Pa 1976); 2001 Apr; 26(8):883-8. PubMed ID: 11317110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro.
    Masuoka K; Michalek AJ; MacLean JJ; Stokes IA; Iatridis JC
    Spine (Phila Pa 1976); 2007 Aug; 32(18):1974-9. PubMed ID: 17700443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading.
    Keller TS; Spengler DM; Hansson TH
    J Orthop Res; 1987; 5(4):467-78. PubMed ID: 3681521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1990 Volvo Award in experimental studies. The dependence of intervertebral disc mechanical properties on physiologic conditions.
    Keller TS; Holm SH; Hansson TH; Spengler DM
    Spine (Phila Pa 1976); 1990 Aug; 15(8):751-61. PubMed ID: 2237625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of loading rate and hydration on the mechanical properties of the disc.
    Race A; Broom ND; Robertson P
    Spine (Phila Pa 1976); 2000 Mar; 25(6):662-9. PubMed ID: 10752096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression--influence of age and degeneration.
    Koeller W; Muehlhaus S; Meier W; Hartmann F
    J Biomech; 1986; 19(10):807-16. PubMed ID: 3782163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc.
    Bass EC; Duncan NA; Hariharan JS; Dusick J; Bueff HU; Lotz JC
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2867-76. PubMed ID: 9431622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experiments study on mechanical behavior of porcine lumbar intervertebral disc after nucleotomy under compression].
    Zhu S; Yang X; Luan Y; Liu Q; Zhang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):590-595. PubMed ID: 31441259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of hydration on the stiffness of intervertebral discs in an ovine model.
    Costi JJ; Hearn TC; Fazzalari NL
    Clin Biomech (Bristol, Avon); 2002 Jul; 17(6):446-55. PubMed ID: 12135546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression.
    Lu YM; Hutton WC; Gharpuray VM
    J Biomech Eng; 1998 Feb; 120(1):48-54. PubMed ID: 9675680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of creep on human lumbar intervertebral disk impact mechanics.
    Jamison D; Marcolongo MS
    J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs.
    MacLean JJ; Owen JP; Iatridis JC
    J Biomech; 2007; 40(1):55-63. PubMed ID: 16427060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research progress in creep characteristics of lumbar intervertebral disc].
    Wang C; Shi Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2020 Dec; 34(12):1624-1629. PubMed ID: 33319547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.