These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 6518391)
1. A mechanism for the analgesic effect of neurotensin as revealed by behavioral and electrophysiological techniques. Behbehani MM; Pert A Brain Res; 1984 Dec; 324(1):35-42. PubMed ID: 6518391 [TBL] [Abstract][Full Text] [Related]
2. Role of neurotensin in the nucleus raphe magnus in opioid-induced antinociception from the periaqueductal gray. Urban MO; Smith DJ J Pharmacol Exp Ther; 1993 May; 265(2):580-6. PubMed ID: 8496808 [TBL] [Abstract][Full Text] [Related]
3. Effect of neurotensin on neurons in the periaqueductal gray: an in vitro study. Behbehani MM; Shipley MT; McLean JH J Neurosci; 1987 Jul; 7(7):2035-40. PubMed ID: 3612228 [TBL] [Abstract][Full Text] [Related]
4. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray. Jiang M; Behbehani MM Pain; 2001 Nov; 94(2):139-147. PubMed ID: 11690727 [TBL] [Abstract][Full Text] [Related]
5. The periaqueductal gray-raphe magnus projection contains somatostatin, neurotensin and serotonin but not cholecystokinin. Beitz AJ; Shepard RD; Wells WE Brain Res; 1983 Feb; 261(1):132-7. PubMed ID: 6132659 [TBL] [Abstract][Full Text] [Related]
6. Neurotensin excitation of serotonergic neurons in the rat nucleus raphe magnus: ionic and molecular mechanisms. Li AH; Yeh TH; Tan PP; Hwang HM; Wang HL Neuropharmacology; 2001 Jun; 40(8):1073-83. PubMed ID: 11406199 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneous distribution of neurotensin-like immunoreactive neurons and fibers in the midbrain periaqueductal gray of the rat. Shipley MT; McLean JH; Behbehani MM J Neurosci; 1987 Jul; 7(7):2025-34. PubMed ID: 3302124 [TBL] [Abstract][Full Text] [Related]
8. Tolerance induced by non-opioid analgesic microinjections into rat's periaqueductal gray and nucleus raphe. Tsiklauri N; Nozadze I; Gurtskaia G; Berishvili V; Abzianidze E; Tsagareli M Georgian Med News; 2010 Mar; (180):47-55. PubMed ID: 20413817 [TBL] [Abstract][Full Text] [Related]
9. Neurotensin excites periaqueductal gray neurons projecting to the rostral ventromedial medulla. Li AH; Hwang HM; Tan PP; Wu T; Wang HL J Neurophysiol; 2001 Apr; 85(4):1479-88. PubMed ID: 11287471 [TBL] [Abstract][Full Text] [Related]
10. Evidence that an excitatory connection between the periaqueductal gray and nucleus raphe magnus mediates stimulation produced analgesia. Behbehani MM; Fields HL Brain Res; 1979 Jul; 170(1):85-93. PubMed ID: 223721 [TBL] [Abstract][Full Text] [Related]
11. The effects of diphenhydramine and SR142948A on periaqueductal gray neurons and on the interactions between the medial preoptic nucleus and the periaqueductal gray. Kreitel KD; Swisher CB; Behbehani MM Neuroscience; 2002; 114(4):935-43. PubMed ID: 12379249 [TBL] [Abstract][Full Text] [Related]
12. [The role of periaqueductal gray neurotensin in electroacupuncture analgesia]. Liu W; Bai B; Song C; Wang S; Shi W Zhongguo Ying Yong Sheng Li Xue Za Zhi; 1997 Aug; 13(3):253-6. PubMed ID: 10074278 [TBL] [Abstract][Full Text] [Related]
13. Opioid-induced release of neurotensin in the periaqueductal gray matter of freely moving rats. Stiller CO; Gustafsson H; Fried K; Brodin E Brain Res; 1997 Nov; 774(1-2):149-58. PubMed ID: 9452203 [TBL] [Abstract][Full Text] [Related]
14. Roles of periaqueductal gray and nucleus raphe magnus on analgesia induced by lappaconitine, N-deacetyllappaconitine and morphine. Guo X; Tang XC Zhongguo Yao Li Xue Bao; 1990 Mar; 11(2):107-12. PubMed ID: 2275382 [TBL] [Abstract][Full Text] [Related]
15. The response of individual nucleus raphe magnus neurons to microinjections of met-enkephalin at midbrain and at bulbar loci: evidence for midbrain-bulbar convergence on individual raphe neurons. Rosenfeld JP Int J Neurosci; 1987 Apr; 33(3-4):165-73. PubMed ID: 3596947 [TBL] [Abstract][Full Text] [Related]
16. Relationship of glutamate and aspartate to the periaqueductal gray-raphe magnus projection: analysis using immunocytochemistry and microdialysis. Beitz AJ J Histochem Cytochem; 1990 Dec; 38(12):1755-65. PubMed ID: 1701457 [TBL] [Abstract][Full Text] [Related]
17. Nuclei within the rostral ventromedial medulla mediating morphine antinociception from the periaqueductal gray. Urban MO; Smith DJ Brain Res; 1994 Jul; 652(1):9-16. PubMed ID: 7953726 [TBL] [Abstract][Full Text] [Related]
18. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus. Reichling DB; Basbaum AI J Comp Neurol; 1990 Dec; 302(2):370-7. PubMed ID: 2289975 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the effects of ventral medullary lesions on systemic and microinjection morphine analgesia. Young EG; Watkins LR; Mayer DJ Brain Res; 1984 Jan; 290(1):119-29. PubMed ID: 6692127 [TBL] [Abstract][Full Text] [Related]
20. Antinociception produced by mu opioid receptor activation in the amygdala is partly dependent on activation of mu opioid and neurotensin receptors in the ventral periaqueductal gray. Tershner SA; Helmstetter FJ Brain Res; 2000 May; 865(1):17-26. PubMed ID: 10814729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]