These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6518396)

  • 21. Single unit recordings in the nuclei raphe dorsalis and magnus during the sleep-waking cycle of semi-chronic prepared cats.
    Cespuglio R; Faradji H; Gomez ME; Jouvet M
    Neurosci Lett; 1981 Jul; 24(2):133-8. PubMed ID: 7254710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory influence of GABA on central serotonergic transmission. Raphé nuclei as the neuroanatomical site of the GABAergic inhibition of cerebral serotonergic neurons.
    Nishikawa T; Scatton B
    Brain Res; 1985 Apr; 331(1):91-103. PubMed ID: 2985201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for a tonic GABAergic control of serotonin neurons in the median raphe nucleus.
    Forchetti CM; Meek JL
    Brain Res; 1981 Feb; 206(1):208-12. PubMed ID: 7470888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. REM sleep induction in prepubertal boys by vasotocin: evidence for the involvement of serotonin containing neurons.
    Pavel S; Goldstein R; Petrescu M; Popa M
    Peptides; 1981; 2(3):245-50. PubMed ID: 6975470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for GABA mediation of sympathetic inhibition evoked from midline medullary depressor sites.
    McCall RB; Humphrey SJ
    Brain Res; 1985 Jul; 339(2):356-60. PubMed ID: 2992705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vasotocin release from the pineal gland of newborn mammals: the involvement of GABA mechanisms.
    Goldstein R
    Endocrinologie; 1986; 24(1):17-20. PubMed ID: 3008305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential effects of phasic auditory and visual stimuli on serotonergic neurons in the nucleus raphe dorsalis and nucleus raphe pallidus in freely moving cats.
    Trulson ME; Trulson VM
    Neurosci Lett; 1982 Oct; 32(2):137-42. PubMed ID: 7145236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of cooling and electrical stimulation of nuclei of raphe system on states of alertness in cat].
    Cespuglio R; Gomez ME; Walker E; Jouvet M
    Electroencephalogr Clin Neurophysiol; 1979 Sep; 47(3):289-308. PubMed ID: 90600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of release processes in central serotoninergic neurons.
    Héry F; Ternaux JP
    J Physiol (Paris); 1981; 77(2-3):287-301. PubMed ID: 6457140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of the release of 5-hydroxyindole compounds in the hypothalamus and the n. raphe dorsalis throughout the sleep-waking cycle and during stressful situations in the rat: a polygraphic and voltammetric approach.
    Houdouin F; Cespuglio R; Gharib A; Sarda N; Jouvet M
    Exp Brain Res; 1991; 85(1):153-62. PubMed ID: 1715824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake-sleep states.
    Sakai K; Crochet S
    Neuroscience; 2001; 104(4):1141-55. PubMed ID: 11457597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sleep permissive components within the dorsal raphe nucleus in the rat.
    el Kafi B; Leger L; Seguin S; Jouvet M; Cespuglio R
    Brain Res; 1995 Jul; 686(2):150-9. PubMed ID: 7583281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat.
    Portas CM; Bjorvatn B; Fagerland S; Grønli J; Mundal V; Sørensen E; Ursin R
    Neuroscience; 1998 Apr; 83(3):807-14. PubMed ID: 9483564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Behavioral function of GABA in the median raphe nucleus.
    Fink H; Morgenstern R
    Biomed Biochim Acta; 1986; 45(4):531-8. PubMed ID: 3707566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of kainic acid injected into raphe dorsal nucleus on sleep stages in cats.
    Moyanova S; Riche D
    Acta Neurobiol Exp (Wars); 1991; 51(3-4):107-14. PubMed ID: 1819189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of dorsal raphe discharge by medial pontine reticular formation stimulation depends on behavioral state.
    Lydic R; McCarley RW; Hobson JA
    Neurosci Lett; 1983 Jul; 38(1):35-40. PubMed ID: 6888805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fos and serotonin immunoreactivity in the raphe nuclei of the cat during carbachol-induced active sleep: a double-labeling study.
    Yamuy J; Sampogna S; López-Rodríguez F; Luppi PH; Morales FR; Chase MH
    Neuroscience; 1995 Jul; 67(1):211-23. PubMed ID: 7477901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radioimmunologic detection and measurement of nonapeptides in the pineal gland.
    Fernstrom JD; Fisher LA; Cusack BM; Gillis MA
    Endocrinology; 1980 Jan; 106(1):243-51. PubMed ID: 7349956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The inhibitory GABAergic influence on striatal serotonergic neurons depends upon the habenulo-raphe pathways.
    Nishikawa T; Scatton B
    Brain Res; 1984 Jun; 304(1):157-61. PubMed ID: 6331579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of striatal serotonin release by the lateral habenula-dorsal raphe pathway in the rat as demonstrated by in vivo microdialysis: role of excitatory amino acids and GABA.
    Kalén P; Strecker RE; Rosengren E; Björklund A
    Brain Res; 1989 Jul; 492(1-2):187-202. PubMed ID: 2473826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.