These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 6519746)

  • 1. Role of renal papillae in the regulation of sodium excretion during acute elevation of renal perfusion pressure in the rat.
    Chen PS; Caldwell RM; Hsu CH
    Hypertension; 1984; 6(6 Pt 1):893-8. PubMed ID: 6519746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal medullary interstitial infusion of diltiazem alters sodium and water excretion in rats.
    Lu S; Roman RJ; Mattson DL; Cowley AW
    Am J Physiol; 1992 Nov; 263(5 Pt 2):R1064-70. PubMed ID: 1443224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure natriuresis after adrenomedullin in anesthetized spontaneously hypertensive rats.
    Kurashina T; Patel AR; Granger JP; Kirchner KA
    Hypertension; 1997 Sep; 30(3 Pt 2):660-3. PubMed ID: 9323000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal function studies in an experimental model of papillary necrosis in the rat.
    Vanholder R; Lameire N; Eeckhaut W; Ringoir S
    Arch Int Physiol Biochim; 1981 Feb; 89(1):63-73. PubMed ID: 6166267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of an acute increase in renal perfusion pressure on sodium transport in the rat kidney.
    Kunau RT; Lameire NH
    Circ Res; 1976 Nov; 39(5):689-95. PubMed ID: 975457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery from renal ischemia-reperfusion injury is associated with altered renal hemodynamics, blunted pressure natriuresis, and sodium-sensitive hypertension.
    Pechman KR; De Miguel C; Lund H; Leonard EC; Basile DP; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2009 Nov; 297(5):R1358-63. PubMed ID: 19710386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natriuretic response to hypervolemia is absent in rats with papillary necrosis.
    Keeler R; Wilson N
    Am J Physiol; 1989 Aug; 257(2 Pt 2):R422-6. PubMed ID: 2527476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic sodium-potassium-ATPase inhibition with ouabain impairs renal haemodynamics and pressure natriuresis in the rat.
    Kurashina T; Kirchner KA; Granger JP; Patel AR
    Clin Sci (Lond); 1996 Oct; 91(4):497-502. PubMed ID: 8983876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of kinins in the control of renal papillary blood flow, pressure natriuresis, and arterial pressure.
    Tornel J; Madrid MI; García-Salom M; Wirth KJ; Fenoy FJ
    Circ Res; 2000 Mar; 86(5):589-95. PubMed ID: 10720421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxanthine plus xanthine oxidase causes profound natriuresis without affecting renal blood flow autoregulation.
    Racasan S; Turkstra E; Joles JA; Koomans HA; Braam B
    Kidney Int; 2003 Jul; 64(1):226-31. PubMed ID: 12787413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal interstitial guanosine cyclic 3', 5'-monophosphate mediates pressure-natriuresis via protein kinase G.
    Jin XH; McGrath HE; Gildea JJ; Siragy HM; Felder RA; Carey RM
    Hypertension; 2004 May; 43(5):1133-9. PubMed ID: 15007031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure natriuresis in salt-sensitive and salt-resistant Sabra rats.
    Gross V; Lippoldt A; Yagil C; Yagil Y; Luft FC
    Hypertension; 1997 Jun; 29(6):1252-9. PubMed ID: 9180625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal interstitial cGMP mediates natriuresis by direct tubule mechanism.
    Jin XH; Siragy HM; Carey RM
    Hypertension; 2001 Sep; 38(3):309-16. PubMed ID: 11566896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic glucose infusion causes sustained increases in tubular sodium reabsorption and renal blood flow in dogs.
    Brands MW; Bell TD; Rodriquez NA; Polavarapu P; Panteleyev D
    Am J Physiol Regul Integr Comp Physiol; 2009 Feb; 296(2):R265-71. PubMed ID: 19073906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of angiotensin II on pressure natriuresis and renal hemodynamics in volume-expanded rats.
    Mattson DL; Raff H; Roman RJ
    Am J Physiol; 1991 Jun; 260(6 Pt 2):R1200-9. PubMed ID: 2058747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of fenoldopam on renal haemodynamics and natriuresis in chronic renal failure.
    de Fijter CW; Comans EF; de Vries PM; Oe PL; Roos JC; Smit AJ; Streurman O; Donker AJ
    Neth J Med; 1990 Jun; 36(5-6):267-78. PubMed ID: 1975651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of nNOS in regulation of renal function in angiotensin II-induced hypertension.
    Cervenka L; Kramer HJ; Malý J; Heller J
    Hypertension; 2001 Aug; 38(2):280-5. PubMed ID: 11509490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure natriuresis and cortical and papillary blood flow in inbred Dahl rats.
    Roman RJ; Kaldunski M
    Am J Physiol; 1991 Sep; 261(3 Pt 2):R595-602. PubMed ID: 1887948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of medullary hemodynamics in the natriuresis of drug-induced renal vasodilation in the rat.
    Lameire N; Vanholder R; Ringoir S; Leusen I
    Circ Res; 1980 Dec; 47(6):839-44. PubMed ID: 7438334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impairment of pressure-natriuresis and renal autoregulation in ANG II-infused hypertensive rats.
    Wang CT; Chin SY; Navar LG
    Am J Physiol Renal Physiol; 2000 Aug; 279(2):F319-25. PubMed ID: 10919852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.