These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 6520138)

  • 1. Static vs dynamic loads as an influence on bone remodelling.
    Lanyon LE; Rubin CT
    J Biomech; 1984; 17(12):897-905. PubMed ID: 6520138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading.
    Lee KC; Maxwell A; Lanyon LE
    Bone; 2002 Sep; 31(3):407-12. PubMed ID: 12231414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats.
    Mosley JR; Lanyon LE
    Bone; 1998 Oct; 23(4):313-8. PubMed ID: 9763142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force.
    Robling AG; Duijvelaar KM; Geevers JV; Ohashi N; Turner CH
    Bone; 2001 Aug; 29(2):105-13. PubMed ID: 11502470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain magnitude related changes in whole bone architecture in growing rats.
    Mosley JR; March BM; Lynch J; Lanyon LE
    Bone; 1997 Mar; 20(3):191-8. PubMed ID: 9071468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth rate rather than gender determines the size of the adaptive response of the growing skeleton to mechanical strain.
    Mosley JR; Lanyon LE
    Bone; 2002 Jan; 30(1):314-9. PubMed ID: 11792603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphologic stages in lamellar bone formation stimulated by a potent mechanical stimulus.
    Rubin CT; Gross TS; McLeod KJ; Bain SD
    J Bone Miner Res; 1995 Mar; 10(3):488-95. PubMed ID: 7785471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periostal pressure.
    Torrance AG; Mosley JR; Suswillo RF; Lanyon LE
    Calcif Tissue Int; 1994 Mar; 54(3):241-7. PubMed ID: 8055374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of bone loss during calcium insufficiency by controlled dynamic loading.
    Lanyon LE; Rubin CT; Baust G
    Calcif Tissue Int; 1986 Apr; 38(4):209-16. PubMed ID: 3085898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of bone mass by mechanical strain magnitude.
    Rubin CT; Lanyon LE
    Calcif Tissue Int; 1985 Jul; 37(4):411-7. PubMed ID: 3930039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element.
    De Souza RL; Matsuura M; Eckstein F; Rawlinson SC; Lanyon LE; Pitsillides AA
    Bone; 2005 Dec; 37(6):810-8. PubMed ID: 16198164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of the bone-tissue remodeling response to axial and torsional loading in the turkey ulna.
    Rubin C; Gross T; Qin YX; Fritton S; Guilak F; McLeod K
    J Bone Joint Surg Am; 1996 Oct; 78(10):1523-33. PubMed ID: 8876580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.
    Norman SC; Wagner DW; Beaupre GS; Castillo AB
    J Biomech; 2015 Jan; 48(1):53-8. PubMed ID: 25443882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of bone formation by applied dynamic loads.
    Rubin CT; Lanyon LE
    J Bone Joint Surg Am; 1984 Mar; 66(3):397-402. PubMed ID: 6699056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased 3H-uridine levels in osteocytes following a single short period of dynamic bone loading in vivo.
    Pead MJ; Suswillo R; Skerry TM; Vedi S; Lanyon LE
    Calcif Tissue Int; 1988 Aug; 43(2):92-6. PubMed ID: 3142673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of strain rate on adaptive bone remodelling.
    O'Connor JA; Lanyon LE; MacFie H
    J Biomech; 1982; 15(10):767-81. PubMed ID: 7153230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone.
    Skedros JG; Hunt KJ; Hughes PE; Winet H
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jul; 273(1):609-29. PubMed ID: 12808646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of strain in the macaque ulna during functional activity.
    Demes B; Stern JT; Hausman MR; Larson SG; McLeod KJ; Rubin CT
    Am J Phys Anthropol; 1998 May; 106(1):87-100. PubMed ID: 9590526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.